
1

1

Interoperability
What does it mean
for enterprises of

emerging economic powers?

Joaquin Miller
Chief—Architecture Review

X-Change Technologies

www.xchangetechnologies.com

2

2

Interoperability

Joaquin Miller
Chief—Architecture Review

X-Change Technologies

www.xchangetechnologies.com

This presentation is about interoperability…

3

3

Interoperability
What does it mean

?

Joaquin Miller

www.xchangetechnologies.com

what it means…

4

4

Interoperability
What does it mean
for enterprises of

emerging economic powers?

Joaquin Miller
Chief—Architecture Review

X-Change Technologies

www.xchangetechnologies.com

And, in particular, what interoperability means for enterprises of emerging economic
powers

This is the question I will use to introduce the topic of this presentation. But
the answers presented is not meant to tell you more about what the word,
‘interoperability,’ means in practice or in theory. Instead, they will be answers
like:

— Why you better think about interoperability.

— The risks of not having it.

— How to get it.

— Decisions that can damage your business

5

5

What is interoperability?

• A quality of a system that has
two or more parts

• The quality that:
the parts are able to cooperate

This presentation is about interoperability. I am a software architect.
Interoperability is what we call an architectural quality. It is a quality
exhibited by software, which that software has because of its architecture.

Examples of architectural qualities of buildings:

— fire safety

— earthquake resistance

— fitness (to surroundings)

— the quality without a name

Interoperability means the quality that software systems can work together
with other software systems, as part of a larger system of software.

Examples of some other qualities: correctness, completeness, usability,
throughput, reliability, maintainability, location transparency, and transaction
transparency.

The architecture of an software system can contribute to or detract from any of
these qualities. Many of them are impossible without an adequate
architecture.

6

6

Why is interoperability
important?

• It is needed when existing systems come
with an acquisition

• It is needed when new systems are built,
which must work with existing systems.

Why is interoperability important for expanding enterprises?

Because expansion is often by acquisition. And that means interoperating with
the newly acquired systems.

And because, even when expansion is not by acquisition, it results in the need
to build new systems. That means interoperating with the systems already in
use.

7

7

Why is software architecture
important for interoperability?

To answer this question, let’s look at some examples of barriers to
interoperability, and an example solution for each problem.

8

8

Not Connected

Home
Country
System

Newly
Acquired
System

Here we have a system in place in the home country, and a newly acquired
system, perhaps in a different country. The two systems can’t interoperate,
because they are not connected.

9

9

Not Connected

Home
Country
System

Newly
Acquired
System

Internet

Today, this barrier can be overcome using the internet. That is, it can be
overcome if an internet connection is available in the location of each system.
That is, the barrier can be overcome if both systems are enabled to
communicate using the internet; it neither is limited to some communication
protocol that does not work with the internet protocols.

This barrier is largely a problem of the past.

[My friend, Lee Felsenstein, recently installed pedal powered computers in
villages in Laos, connected to the nearest internet access point by wireless
links.]

10

10

Interworking

We have only provided the ability to
exchange communications.
Nothing more

Architects don’t call this interoperability.
It is called interworking. We’ll see the

use of this distinction later.

11

11

Different Language

Home
Country
System

Newly
Acquired
System

Internet

16 bit
characters

8 bit
characters

Another barrier is different languages. If one of your companies acquires a
company in another country, you are very likely to encounter this barrier. One
example of a language barrier is the representation of text. There is much
software in place that can not handle sixteen bit text characters.

12

12

Different Language

Home
Country
System

Newly
Acquired
System

16 bit
characters

8 bit
characters

Interceptor

You can overcome this barrier by introducing what we software architects call
an interceptor. This is a part of the system that does necessary conversions to
enable interoperability. In this case, the interceptor converts each eight bit
character to the corresponding character in the sixteen bit system. And, going
in the other direction, converts some of the sixteen bit characters to the
corresponding eight bit character. (Of course, most of the sixteen bit
characters can’t be handled in this way. But this will work in many situations,
for example, if customer names are being transmitted between countries, and
are always displayed in the original form.)

This is just one of many examples of different languages.

13

13

Different Language

Home
Country
System

Newly
Acquired
System

16 bit
characters

8 bit
characters

Interceptor

The placement of the interceptor may decided on architectural considerations
or for other reasons. Perhaps there is a single, general purpose interceptor that
handles several different language conversions. Or perhaps the interceptor is
placed by the home country system, simply so it can more easily be managed
at the home data center.

14

14

Different Names

Home
Country
System

Newly
Acquired
System

Customer

Interceptor

Client

It is very likely that the a data element with one name in the home country
system will have different a name in an acquired system.

15

15

Different Names

Home
Country
System

Newly
Acquired
System

Customer Client

This barrier can be overcome with a second interceptor to convert the data
names that are being communicated.

16

16

Different Model

Home
Country
System

Newly
Acquired
System

Customer Account

It is also very likely that an acquired system will have been built using a
different model of the business.

Until recently it was quite common for the systems of banks in the USA to be
based on accounts. The result was that it was very difficult, and often
impractical, to find all the accounts of a particular customer. This means that
it is not possible to report a single view of all the business relationships with a
customer.

Notice that this kind of barrier can occur even within the same local part of the
home country business. All of these barriers can show up at home.

17

17

Different Model

Home
Country
System

Newly
Acquired
System

Customer
Account

Account

The previous drawing did not mean to say that the home country system does
not have account numbers; it does. But the model used to build the home
country system keeps track of all relationships with a customer, using a single
customer identifier, distinct from the account number.

18

18

Different Model

Home
Country
System

Newly
Acquired
System

Customer Account

Customer

Dummy
Customer

Customer
Account

One way to overcome this barrier is to create a dummy customer for each
account in the newly acquired system. It is still not possible to report a unified
view of a customer from data in the newly acquired system, but at least the
home country system is able to work with data communicated from the newly
acquired system.

19

19

Different Model

Home
Country
System

Newly
Acquired
System

Customer Account

Customer

Dummy
Customer

Customer
Account

The newly added part, indicated in red, creates a dummy customer for every
account in any acquired system, which does not have customer identifiers.

But there is a real risk here. This solution requires getting into and changing
the home country system. I’m sure that at each of your companies all systems
are well designed in anticipation of change, and it is not risky to make
changes. (We call this quality ‘modifiability.’) But perhaps you know of a
company where it is risky to make changes in some of the older systems.

20

20

Different Model

Home
Country
System

Newly
Acquired
System

Customer Account

Customer

Dummy
Customer

Customer
Account

An alternative to changing the home system is to introduce a new interceptor,
which creates a dummy customer identifier for every account in any acquired
system that does not have customer identifiers, and keeps track of those
dummy customer identifiers, so it can add the correct dummy customer
identifier to every incoming communication about an account, and remove the
customer identifier from an outgoing communication, if that communication is
with a system that does not keep customer identifiers.

Now we have overcome the barrier without attempting to change the home
country system.

Which of these two solutions to choose is an architectural decision.

21

21

This is a simple case

Home
Country
System

Newly
Acquired
System

Customer AccountCustomer
Account

This is a simple case. We have encountered only three interoperability
problems and have added only three interceptors and a new database. Real
interoperability architectures are very often not this simple.

This is also a patchwork architecture, with a different fix for each problem.
That may or may not be the best solution. A decision choosing a particular
solution is an architectural decision.

22

22

Different
Software Architectures

Home
Country
System

Newly
Acquired
System

Different
Software Architectures

Different
Software Architectures

Different
Software Architectures

Different
Software Architectures

Different
Software Architectures

The general case of failure of interoperability is that the two systems have
different software architectures. Different languages, different names, and
different models are all examples of different software architectures.

23

23

Home
Country
System

Newly
Acquired
System

Architecture
for

Interoperability

Different
Software Architectures

A general solution to barriers to interoperability is to build an architecture
designed to provide interoperability, even between systems with different
software architectures.

In a BOSC keynote Wednesday, I will be talking about the interoperability
architecture of Wells Fargo Bank, an expanding enterprise.

24

24

Salesman’s Solutions

• Single platform

• Web services

I’ll give a couple of examples of so-called solutions, which sound good when
presented by the salesman. There are a lot more examples like this, but not
time for them.

25

25

Single platform

“Overcome barriers to interoperability.
Use a single platform.”

26

26

Single platform

A single platform enables
interworking.

27

27

Single platform

The US Navy ordered a ship to be built,
using Big Bill NT in all control systems

On a shakedown cruise, the captain

The US Navy ordered a ship to be built,
using Microsoft NT in all control systems

He had an interoperability problem.

shut down all control subsystems
and called for another ship
to tow him back to port.

Because of interoperation failures between the various control subsystems, the
captain was not able to restore the operation of the control system after a
software failure, and so he was unable to control his ship.

It is reported that, in order to stop his ship and wait for a tow, he shut down
power to the control systems.

………..

Using a single platform does not prevent interoperability problems.

It does overcome some of the barriers to interoperability. But these can also
be overcome in other ways.

And it is certain that interoperation using different platforms can be provided
easily, when attention is paid to architecture.

You experience trouble-free interoperation of software on one platform with
software on an entirely different platform, whenever you use a standards-
compliant web browser, such as Opera, on the Wintel PC platform, to visit a
standards-compliant web site using a different platform, such as Apache on
Linux.

Even, sometimes, when you use a compliant browser to visit a non-compliant
web site.

If your customers are having trouble at your web site, the cause is often that
you use non-standard technology, such as ActiveX.

28

28

Web services

“Overcome barriers to interoperability.
Use web services.”

29

29

Web services provides
a shared data format, XML, and
a shared communication protocol, HTTP

Web services

The same benefits are provided by CORBA.

Web services provides
a shared data format and
a shared communication protocol

Using web services does not prevent interoperability problems.

It does overcome some of the barriers to interoperability. But these can also
be overcome in other ways.

And it is certain that interoperation can be provided easily, when attention is
paid to architecture.

30

30

Web services

Two added benefits of web services are:
• use of familiar tools
• defeat of firewall protection.

31

31

Web services

Because there is so much work being done
on web services, in some cases it may be
a good choice for an interworking protocol

Whether or not is an architectural question.

32

32

Design-time Interoperability

This is the best way

But it is too late for this

Do, however, make certain new systems
are designed for interoperability

Design-time interoperability means simply: designing systems so they can
interoperate.

33

33

An Architecture
for Interoperability

To ensure rapid and successful
integration of existing systems

Put in place
an architecture for interoperability

34

34

An Architecture
for Interoperability

• Shared business model
Model of the business community
RM-ODP Enterprise Language
www.joaquin.net/ODP/Part3/5.html

• Shared information model
• Shared integration architecture

35

35

A pause, after all that technical material.

36

36

How does software architecture
contribute to the bottom line?

This is a question that interests
many executives in my home country.

Let’s ask a better question.

37

37

How does software architecture
contribute to long term success?

Architecture contributes to
long term success by contributing to:

• Return on investment
• Agility in the market
• Defense against competitors

These are just three of the important contributions good software architecture
can make to success

38

38

How does software architecture
provide a defense

against competitors?

The classics on war teach
the best way to defeat your enemy is to
bring the enemy to defeat himself.

Your competitors study these classics.
They will take care to give you opportunities
to defeat yourself.

The classics on war teach that the very best way to defeat an enemy is to bring
the enemy to defeat himself.

Your competitors study these classics. They will take care to give you
opportunities to defeat yourself.

39

39

How do you defend
against such an attack?

By taking care to not defeat yourself.

How do you defend against such an attack?

By taking care to not defeat yourself.

40

40

How does software architecture
provide a defense

against competitors?

Failure to give proper attention to architecture
is self defeating.

Good architecture provides
a defense against competitors
by defending against
self-defeating practices.

Failure to give proper attention to architecture is self defeating.

Good architecture provides a defense against competitors
by defending against

self-defeating practices.

41

41

How does software
architecture enable an
offensive capability?

Examples of architectural qualities
that enable an offensive capability:

• Usability
• Modularity
• Extensibility
• …

An example in financial services software is the famous (among we software
architects) Swiss financial derivative products—but the same applies to any
kind of new product

It is important to recognize how the Swiss were able to do what they did.
They used a thorough analysis of the domain and a toolkit of Smalltalk classes
together with a framework for a derivative evaluation program. These two
things enabled creating, in one day, a program to determine the value of a new
kind of derivative.

This is an example of the value of a good software architecture combined with
a creative analysis of the problem.

42

42

How does software
architecture enable an
offensive capability?

Examples of architectural qualities
that enable an offensive capability:

• The quality without a name

Alexander, A Pattern Language

An example in financial services software is the famous (among we software
architects) Swiss financial derivative products—but the same applies to any
kind of new product

It is important to recognize how the Swiss were able to do what they did.
They used a thorough analysis of the domain and a toolkit of Smalltalk classes
together with a framework for a derivative evaluation program. These two
things enabled creating, in one day, a program to determine the value of a new
kind of derivative.

This is an example of the value of a good software architecture combined with
a creative analysis of the problem.

43

43

Extensibility

Capture new markets quickly
by allowing rapid implementation of

new products and product features

44

44

ROI

return
ROI =

investment

Most of the software people who talk to you about ROI, don’t even know what
ROI means.

Often people say ROI when they mean the time to recover the initial
investment.

Often ROI is thought of as return divided by investment.

45

45

ROI

ROI = IRR (investment, stream of returns)

Of course, and as you know well, return on investment is a percentage rate of
return that is a function of the amount of the original investment and the
stream of returns over time.

46

46

ROI

return
ROI =

investment

So this formula is incorrect, but will be a useful graphic to illustrate what I
have to say next.

47

47

ROI

You have acquired a company:

What is your return on that investment?

48

48

Reduce investment

return
ROI =

investment

This is one way to increase ROI. But at first glance this does not seem to be
useful to improve the return on the investment in the case of an acquisition.
After all, the original investment is fixed at the time of the purchase.

Of course, after a moments thought, we understand that the investment will
continue after the acquisition.

49

49

Architecture
to reduce investment

Effective application of
an architecture for integration
will greatly reduce the cost
of integrating the acquired systems.

50

50

ROI

You need a new system
to support a new product,
or to improve customer service,
or … :

What will be your return on that investment?

51

51

Reduce investment

return
ROI =

investment

52

52

Architecture
to reduce investment

Effective application of
an architecture for integration
will greatly reduce the cost
of integrating the acquired systems
and the cost of new systems.

53

53

One MDA case study

Traditional development team: 507.5 hours

MDA team: 330 hours

Approaches such as the OMG Model Driven Architecture can reduce the cost
of new systems. One example, for a very small program, showed a
development cost reduction of one third.

54

54

Total investment
• Planning
• Design
• Programming
• Testing
• Deployment
• Operation
• Maintenance

But development cost is actually a very small part of the total investment in a
system (the total cost of ownership).

Good software architecture will reduce all these costs.

55

55

Increase Return

return
ROI =

investment

The other way to improve ROI is to increase the return.

56

56

Two increases

Effective software architecture can

produce a stream of savings

and can
increase the present value
of a stream of income
by reducing the time to market.

Two ways to increase the return are

—to produce a stream of savings and

—to provide earlier returns.

57

57

How to build a plant

Here is a fable
about several ways to build a plant.

Instead of continuing my pitch for software architecture, let me offer you a
sort of fable. I will describe several different ways to build a plant.

58

58

How to build a plant
I:
Hire welders, electricians, and other

craftsmen, and a project manager.
Give them money.
Tell them to build the plant.

59

59

How to build a plant
II:
Hire an architect and some engineers.
Have the architect design the plant

with the help of the engineers.
Give the plans and money to a contractor.
Tell him to build the plant.

60

60

How to build a plant
III:
Hire an architect and some engineers.
Give the plans and money to a contractor.
Tell him to build the plant,

while the architect provides
construction supervision.

In case of conflicts between them
follow the advice of the contractor.

61

61

How to build a plant
IV:
Hire an architect and some engineers.
Give the plans and money to a contractor.
Tell him to build the plant,

while the architect provides
construction supervision.

In case of conflicts between them
follow the advice of the architect.

Of course, it is not as simple as always following the advice of the architect.
You are the executive. Your job is to listen to both sides and make the
decision.

But look back at III.

Are your managers always choosing what will get the job done “ahead of time
and under budget,” even when the architect explains that this choice will
increase the total cost?

62

62

How to build a plant
IV:
Hire an architect and some engineers.
Give the plans and money to a contractor.
Tell him to build the plant,

while the architect provides
construction supervision.

In case of conflicts between them
follow the advice of the architect.

Of course, it is not as simple as always following the advice of the architect.
You are the executive. Your job is to listen to both sides and make the
decision.

But look back at III.

Are your managers always choosing what will get the job done “ahead of time
and under budget,” even when the architect explains that this choice will
increase the total cost?

63

63

A Success Story
In the BOSC Keynote Wednesday afternoon,

Wells Fargo is an example of
• An architecture for interoperability
• Using MDA to achieve interoperability.
Send one of your software architects.

Not because MDA is important, but
because it is part of
an architecture for interoperability.

In the BOSC Keynote Wednesday afternoon, I mention Wells Fargo Bank in
an example of using Model Driven Architecture (MDA) to achieve
interoperability.

Send one of your software architects. Not because MDA is important, but
because what Wells Fargo did is an example of an architecture for
interoperability, whether MDA is used or not.

If you don’t have software architects, get one.

64

64

Software Architects

If you don’t have software architects,

get one.

65

65

Interoperability
What does it mean
for enterprises of

emerging economic powers?

Joaquin Miller
Chief—Architecture Review

X-Change Technologies

www.xchangetechnologies.com

