
1

Lovelace Computing

Model Driven Architecture

MDA
Joaquin Miller

Lovelace Computing
representing X-Change Technologies

This is a tutorial prepared for the OMG Fourth Workshop
UML™ for Enterprise Applications: Delivering the Promise of MDA

The tutorial describes the MDA pattern and the basic concepts on which it is
built. It discusses MDA platform-independent to platform-specific
transformation and briefly outline other MDA capabilities.

The material for this presentation is based on the current MDA Guide,
omg/2003-06-01. http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

These notes include text from the MDA Guide: Copyright © 2003 OMG and from the
Reference Model of Open Distributed Processing, X.900 and IS 10746: Copyright © 1995,
1996 ISO and ITU

http://www.joaquin.net/ODP/

Joaquin Miller joaquin.no.spam that-sign acm the-dot org

Lovelace Computing Company www.joaquin.net

Lovelace is a trademark of Lovelace Computing Company

Presentation Copyright © 2003 Lovelace Computing Company

2

Lovelace Computing

Acknowledgements

This is largely a presentation of the
OMG MDA Guide.

The Guide was prepared by the ORMSC,
under the supervision of the AB.

Many folk contributed to the Guide.
I’m to blame for what is presented here

that is not in the Guide
(and for what is in the Guide).

Mariano Belaunde (France Telecom R&D) Carol Burt (2AB)
Cory Casanave (Data Access Technologies) Fred Cummins (EDS)
Desmond DSouza (Kinetium) Keith Duddy (DSTC)
William El Kaim (BusinessOne/Thales) Alan Kennedy (Kennedy Carter)
William Frank (X-Change Technologies) David Frankel (David Frankel Consulting)
Randall Hauch (Metamatrix) Stan Hendryx (Hendryx & Associates)
Matthew Hettinger (Mathet Consulting) Richard Hubert (Interactive Objects Software)
Duane Hybertson (MITRE) Sridhar Iyengar (IBM)
Jean Jourdan (THALES) Thomas Koch (Interactive Objects Software)
Toshiaki Kurokawa (CSK Corp.) Anthony Mallia (CIBER)
Stephen Mellor (Project Technology) Joaquin Miller (Lovelace Computing)
Jeff Mischkinsky (Oracle) Jishnu Mukerji (HP)
Chalon Mullins (Charles Schwab) Makoto Oya (Hitachi)
Laurent Rioux (THALES) Peter Rivett (Adaptive)
Ed Seidewitz (Intelidata Technologies Corporation) Bran Selic (Rational Software)
Jon Siegel (OMG) Oliver Sims (Sims Associates/IONA)
Dave Smith (Deere & Company) Richard Soley (OMG)
Akira Tanaka (Hitachi) Sandy Tyndale-Biscoe (OpenIT)
Axel Uhl (Interactive Objects Software) Andrew Watson (OMG)
Dirk Weiseand (Interactive Objects Software) Bryan Wood (OpenIT)

3

Lovelace Computing

Communication

= Question or objection

= Uncertainty

= Agreement or acceptance

4

Lovelace Computing

Communication,
please!

= Question or objection

= Uncertainty

= Agreement or acceptance

5

Lovelace Computing

Communication,
please!

= contribution

6

Lovelace Computing

OMG
Architectures

OMA

CORBA

MDA

Over the last dozen years, the Object Management Group, better known as
OMG, standardized the object request broker (ORB) and a suite of object
services. This work was guided by the Object Management Architecture
(OMA), which provides a framework for distributed systems and by the
Common ORB Architecture, or CORBA, a part of that framework.
The OMA and CORBA were specified as a software framework, to guide the
development of technologies for OMG adoption. This framework is in the
same spirit as the OSI Reference Model and the Reference Model of Open
Distributed Processing (RM-ODP or ODP). The OMA framework identifies
types of parts that are combined to make up a distributed systemand, together
with CORBA, specifies types of connectors and the rules for their use.

Six years ago Mary Loomis led the OMG members in further enlarging
their vision to include object modeling. This resulted in the adoption of
the Unified Modeling Language, UML. OMG members then began to
use UML in the specification of technologies for OMG adoption.
In keeping with its expanding focus, last year OMG adopted a second
framework, the Model-Driven Architecture or MDA [6].
Development of technologies for this framework is ongoing.

7

Lovelace Computing

MDA

Unlike OMA, MDA is not a framework for
implementing distributed systems

Instead, it is an approach to
using models in software development

MDA is not, like the OMA and CORBA, a framework for implementing
distributed systems. It is an approach to using models in software
development.
MDA is another small step on the long road to turning our craft into an
engineering discipline.

8

Lovelace Computing

Goals

— portability
— interoperability
— reusability

— increased quality

— reduced cost

Three primary goals of MDA are
— portability,
— interoperability and
— reusability
Two other goals are

— increased quality

— reduced cost

Despite the wrong thinking of many panic stricken project managers,
these two goals go hand in hand. Increased quality results in lower
cost. Project cost is reduced. And, even more important for the owner,
total cost of ownership is reduced dramatically.
MDA works toward the achievement of these goals through
architectural separation of concerns.

9

Lovelace Computing

Separation
of concerns

— specifying a system independently of
the platform that supports it

— specifying platforms
— choosing a particular platform for the

system
— transforming the specification into one

for a particular platform.

The Model-Driven Architecture starts with the well-known and long
established idea of separating the specification of the operation of a
system from the details of the way that system uses the capabilities of
its platform.
MDA provides an approach and tools for:
— specifying a system independently of the platform that supports it,
— specifying platforms,
— choosing a particular platform for the system, and
— transforming the specification into one for a particular platform.

10

Lovelace Computing

MDA Pattern

PIM

PSM

Transformation

Model transformation is the process of converting one model to another
model of the same system.
The drawing illustrates the MDA pattern, by which a PIM is
transformed to a PSM.
The drawing is intended to be suggestive. The platform independent
model and other information are combined by the transformation to
produce a platform specific model.
The drawing is also intended to be generic. There are many ways in
which such a transformation may be done. However it is done, it
produces, from a platform independent model, a model specific to a
particular platform.
The box with no name represents what goes into the transformation, in
addition to the platform independent model. This varies with different
styles of MDA.

11

Lovelace Computing

Basic Concepts

System and model
Model-driven
Architecture
Viewpoint
Platform
Independence
Transformation

12

Lovelace Computing

System

A system is
anything of interest both:

as a whole and
as comprised of parts.

Existing, planned, or to be modified

We’ll present the MDA ideas in terms of some existing or planned
system. That system may include anything: a program, a single
computer system, some combination of parts of different computer
systems, a federation of computer systems, each under separate control,
people, an enterprise, a federation of enterprises…
System: Something of interest as a whole or as comprised of parts. A
component of a system may itself be a system, in which case it may be
called a subsystem.
[RM-ODP 2-6.5 www.joaquin.net/ODP/Part2/6.html#6.5]

The central focus of MDA is software. Much of the discussion will
focus on software within automatic information processing systems.

13

Lovelace Computing

Environment

The environment of a system is
everything in a model of that system
other than that system.

It is not possible to make a useful model
of an actual system that does not include
an environment.

UML will be used to specify or describe open systems: those that interact with
their environment.

So, in order to understand an existing system, parts of the environment of that
system must be described. And parts of the environment of a system to be
built must be specified, in order to understand what the environment must be
like for the system to work.

In an ODP or CommunityUML model, the environment of a system is
everything in the model, other than that system.

Environment (of an object): the part of the model which is not part of that
object.

[RM-ODP 2-8.2 www.joaquin.net/ODP/Part2/8.html#8.2]

Of course, the system and its environment form another system. When the
distinction does not matter, it is not this larger system we mean in this
presentation, but the system being specified or described.

14

Lovelace Computing

Environment

The environment of a system is
everything in a model of that system
other than that system.

It is not possible to make a useful model
of an actual system that does not include
an environment.

The following statement is just fine in practice, though not exactly true:

It is not possible to make a useful model of an actual system that does not
include an environment.

The reason that the statement is not exactly true is that the universe is a closed
system, so has no environment.

The universe the only system that is closed at all times. Other than the
universe, every system is open. [19]

[19] Bunge, Treatise on Basic Philosophy ISBN 90-277-0944-0 (volume 4)

15

Lovelace Computing

Application

A system consists of one or more
applications,
supported by one or more platforms

In this presentation we will consider that a system consists of one or more
applications, supported by one or more platforms

‘Application’ is not intended as a technical term, but we will need it later in
the discussion.

16

Lovelace Computing

Model

A model is
a description or specification …

… of something …

… for a purpose.

A model of a system is a description or specification of that system and
its environment for some certain purpose. A model is a model of
something.
A model is often presented as a combination of drawings and text. The
text may be in a modeling language or in a natural language.
The more exact the model, the more likely the system built using the
model will be what is wanted.

17

Lovelace Computing

Model

A model is
a description or specification …

… of something …

… for a purpose.

18

Lovelace Computing

Model

A model is
a description or specification …

… of something …

… for a purpose.

19

Lovelace Computing

Model

A model is
a description or specification …

… of something …

… for a purpose.

20

Lovelace Computing

Model-driven

model-driven because it provides a means
for using models to direct the course of

understanding
design
construction
deployment
operation
maintenance
modification

MDA is an approach to system development, which increases the power of
models in that work. It is model-driven because it provides a means for using
models to direct the course of understanding, design, construction,
deployment, operation, maintenance and modification.

21

Lovelace Computing

Architecture

The architecture of a system is
a specification of the

parts and connectors of the system and
the rules for the interactions of the parts

using the connectors. [5]

The architecture of a system is a specification of the parts and connectors of
the system and the rules for the interactions of the parts using the
connectors. [5]
Architecture (of a system): A set of rules to define the structure of a system
and the interrelationships between its parts.
[RM-ODP 2-6.6 www.joaquin.net/ODP/Part2/6.html#6.6]

The Model-Driven Architecture prescribes certain kinds of models to be used, how
those models may be prepared and the relationships of the different kinds of
models.

The ‘architecture’ in ‘model driven architecture’ extends the central meaning of
architecture.[18] It is about the architecture of a system of models. The models are
connected by transformation relationships, which structure the models.

[5] Shaw and Garlan, Software Architecture, Prentice Hall ISBN 0-13-182957-2

[18] Lackoff, Women, Fire, and Dangerous Things, University of Chicago, ISBN 0-
226-46804-6

22

Lovelace Computing

Architecture

The architecture of a system is
a set of rules to define

the structure of a system and the
interrelationships between its parts. [1]

23

Lovelace Computing

Viewpoint

A viewpoint on a system is
a technique for abstraction
using a selected set of

architectural concepts and
structuring rules,

in order to focus on
particular concerns within that system.

A viewpoint on a system is a technique for abstraction using a selected
set of architectural concepts and structuring rules, in order to focus on
particular concerns within that system. [Here ‘abstraction’ is used to
mean the process of suppressing selected detail to establish a simplified
model.]
The concepts and rules may be considered to form a viewpoint language.

Examples:
The Reference Model of Open Distributed Processing (ODP) provides five
viewpoints for specifying a distributed system. [1]
Another classification specifies three (very similar to the SPARC database
model viewpoints [2]): a conceptual viewpoint, describing the place of a system
in the situation in which that system will be (or is already) placed, a
specification (logical) viewpoint, specifying what that system must know and
do, and an implementation (physical) viewpoint, specifying in detail the
construction of that system. [3]

[1] ISO, RM-ODP [X.900]. www.joaquin.net/RM-ODP/

[2] ANSI/X3/SPARC, DBMS Framework Report, Information Systems, 3,
1978.

[3] Daniels, Modeling with a Sense of Purpose, IEEE Software, 19:1, January
2002.

24

Lovelace Computing

Abstraction

‘Abstraction’ is used to mean
the process of
suppressing selected detail
to establish a simplified model

or the result of that process.

I’ll define how I am using ‘abstraction,’ just so we can be more exact.

Abstraction: The process of suppressing irrelevant detail to establish a
simplified model, or the result of that process.

[RM-ODP 2-6.3 www.joaquin.net/ODP/Part2/6.html#6.3]

25

Lovelace Computing

MDA
Viewpoints

The Model-Driven Architecture specifies
three viewpoints on a system:

a computation independent viewpoint
a platform independent viewpoint
a platform specific viewpoint.

We’ll discuss these viewpoints in what follows.

26

Lovelace Computing

Viewpoint
language

The concepts and rules of a viewpoint
may be considered to form
a viewpoint language.

<Viewpoint> language: Definitions of concepts and rules for the specification
of an ODP system from the <viewpoint> viewpoint; thus: engineering
language: definitions of concepts and rules for the specification of an ODP
system from the engineering viewpoint.

[RM-ODP Part3-4.2.1.1 www.joaquin.net/ODP/Part3/4.html#4.2.1.1]

A modeling language intended for specifying a platform specific model for a
certain type of platform can be called a platform specific language.

27

Lovelace Computing

View

A viewpoint model or view of a system is
a representation of that system

from the perspective of a chosen viewpoint.

A viewpoint model or view of a system is a representation of that system from
the perspective of a chosen viewpoint. The distinction between viewpoint and
viewpoint model is important. ‘View’ is a convenient term for viewpoint
model. [4]

[4] IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems IEEE Standard 1471-2000.

28

Lovelace Computing

Platform

Generic platform types

Object
Batch
Dataflow

The Object and Reference Model Subcommittee of the OMG Architecture Board
(ORMSC) was careful and deliberate in not defining platform in its draft of the
OMG MDA Guide. Here are some examples of kinds of platforms:

Generic platform types

Object: A platform that supports the familiar architectural style of objects with
interfaces, individual requests for services, performance of services in response
to those requests, and replies to the requests. [5]

Batch: A platform that supports a series of independent programs that each run
to completion before the next starts.

Dataflow: A platform that supports a continuous flow of data between software
parts.

[5] Shaw and Garlan, Software Architecture, Prentice Hall ISBN 0-13-182957-2

29

Lovelace Computing

Platform

Technology specific platform types

CORBA
CORBA Components
Java 2 Components

Technology specific platform types

CORBA: An object platform that enables the remote invocation and event
architectural styles.

CORBA Components: An object platform that enables a components and
containers architectural style. Java 2 Components: Another platform that
enables a components and containers style.

Java 2 Components: Another platform that enables a components and
containers style.

30

Lovelace Computing

Platform

Vendor specific platform types

Borland VisiBroker, Iona Orbix
BEA WebLogic, IBM WebSphere
Microsoft .NET

Vendor specific platform types

CORBA: Iona Orbix, Borland VisiBroker, and many others

Java 2 Components: BEA WebLogic Server, IBM WebSphere software
platform, and many others

Microsoft .NET

31

Lovelace Computing

Application

In this presentation, to focus on software,
a system will be described as
comprising one or more applications,
supported by one or more platforms.

Application is just a term of convenience, to distinguish the software being
specified from the platform that will support that software.

32

Lovelace Computing

Platform
independence

Platform independence is a quality,
which a model may exhibit:

the quality that the model does not
call for
the support of a platform
of a particular type

Platform independence is a quality, which a model may exhibit. This is the
quality that the model is independent of the features of a platform of a
particular type.

Like most qualities, platform independence is a matter of degree. So, one
model might only assume availability of features of a very general type of
platform, such as remote invocation, while another model might assume the
availability a particular set of tools for the CORBA platform. Likewise, one
model might might be dependent on a particular type of platform, but only
because it assume the availability of one feature of a particular type of
platform, while another model might be fully committed to that type of
platform.

33

Lovelace Computing

Questions?

Does anyone have a different take
on the concepts discussed so far?

Can everyone go forward with
no definition of ‘platform’ ?

34

Lovelace Computing

MDA
Viewpoints

Computation independent viewpoint

Platform independent viewpoint

Platform specific viewpoint

The description of the Model Driven Architecture in the MDA guide is based
on the concept, viewpoint.

Remember that a viewpoint is a form of abstraction achieved using a selected
set of architectural concepts and structuring rules, in order to focus on
particular concerns within a system. So, each of the three MDA viewpoints is
a way to prepare a model of a system. The same system is seen from a
different viewpoint in different viewpoint models of that system.

35

Lovelace Computing

Computation independent
viewpoint

The computation independent viewpoint
focuses on the system
and its environment.
The details of the structure of the system
are hidden or as yet undetermined.

There is some tension in OMG on just what does or should count as a
computation independent viewpoint model. That is, on what the concepts and
structuring rules are, which define the computation independent viewpoint.

The MDA Guide says: A computation independent model is a view of a system
from the computation independent viewpoint. A CIM does not show details of
the structure of systems. A CIM is sometimes called a domain model and a
vocabulary that is familiar to the practitioners of the domain in question is
used in its specification.

It is assumed that the primary user of the CIM, the domain practitioner, is not
knowledgeable about the models or artifacts used to realize the functionality
for which the requirements are articulated in the CIM. The CIM plays an
important role in bridging the gap between those that are experts about the
domain and its requirements on the one hand, and those that are experts of the
design and construction of the artifacts that together satisfy the domain
requirements, on the other.

The MDA technology adoption document says: The computation independent
business model is one in which the Computational (c.f.

RM-ODP computational viewpoint) details are hidden or as yet undetermined.

RM-ODP Computational viewpoint: A viewpoint on an ODP system and its
environment which enables distribution through functional decomposition of
the system into objects which interact at interfaces.

[RM-ODP 3-4.1.1.3 www.joaquin.net/ODP/Part3/4.html#4.1.1.3]

36

Lovelace Computing

Platform independent
viewpoint

The platform independent viewpoint
focuses on the operation of a system
while hiding the details necessary for
a particular platform.

The platform independent viewpoint focuses on the operation of a system
while hiding the details necessary for a particular platform. A platform
independent view shows that part of the complete specification that does not
change from one platform to another.

A platform independent view may use a general purpose modeling language,
or a language specific to the area in which the system will be used.

37

Lovelace Computing

Platform independent
viewpoint

A platform independent view shows
that part of the complete specification
that does not change
from one platform to another.

38

Lovelace Computing

Platform specific
viewpoint

The platform specific viewpoint combines
the platform independent viewpoint with
an additional focus on the detail of
the use of a specific platform by a system.

Notice that this means that whatever is represented in a platform independent
model is also represented in a corresponding platform specific model.

And notice that this is not the same as to write: whatever appears in a platform
independent model also appears in a corresponding platform specific model.

The two models may be quite different, but they represent the same things.
The platform independent model represents those things in a platform
independent way. The platform specific model will usually include more
detailed representations and representations of things not represented in the
platform independent model.

39

Lovelace Computing

MDA
model types

Computation independent model

Platform independent model

Platform specific model

Platform model

40

Lovelace Computing

Platform independent
model (PIM)

A platform independent model is
a view
of a system from the
platform independent viewpoint.

A PIM exhibits platform independence
and is suitable for use with
a number of different platforms
of similar type.

41

Lovelace Computing

Platform specific
model (PSM)

A platform specific model is
a view of
a system from the
platform specific viewpoint.

A PSM combines
the specifications in the PIM with
the details that specify how that system
uses a particular type of platform.

42

Lovelace Computing

Platform
model

A platform model provides
a set of technical concepts,
representing the different kinds of parts
that make up a platform
and the services provided by that platform.

A platform model provides a set of technical concepts, representing the
different kinds of parts that make up a platform and the services
provided by that platform. It also provides, for use in a platform
specific model, concepts representing the different kinds of elements to
be used in specifying the use of the platform by an application.
Example: The CORBA Component Model provides the concepts,
EntityComponent, SessionComponent, ProcessComponent, Facet, Receptacle,
EventSource, and others. These concepts are used to specify the use of the
CORBA Component platform (CCM) by an application.
A platform model also specifies requirements on the connection and
use of the parts of the platform, and the connections of an application to
the platform.
Example: OMG has specified a model of a portion of the CORBA platform in
the UML profile for CORBA. [formal-02-04-01] This profile provides a
language to use when specifying CORBA systems. The stereotypes of the
profile can be used as a set of markings.
A generic platform model can amount to a specification of a particular
architectural style.

43

Lovelace Computing

Platform
model

A platform model also provides,
for use in a platform specific model,
concepts representing the different kinds of
elements to be used in specifying
the use of the platform by an application.

44

Lovelace Computing

Platform
model

A platform model also
specifies requirements on
the connection and use
of the parts of the platform,
and the connections of an application
to the platform.

45

Lovelace Computing

Platform
model

Example:
OMG has specified a model of a portion of the
CORBA platform in the UML profile for
CORBA. [formal-02-04-01]
This profile provides a language to use when
specifying CORBA systems. The stereotypes of
the profile can be used as a set of markings.

46

Lovelace Computing

Platform
model

A generic platform model can amount to
a specification of a particular
architectural style.

47

Lovelace Computing

Platform
model

Example:
The CORBA Component Model provides
the concepts, EntityComponent,
SessionComponent, ProcessComponent,
Facet, Receptacle, EventSource, and others.
These concepts are used to specify the use of
the CORBA Component platform (CCM)
by an application.

48

Lovelace Computing

Virtual
machine

One way to achieve platform independence
is to target a model for a
technology-neutral virtual machine

A very common technique for achieving platform independence is to target a
system model for a technology-neutral virtual machine. A virtual machine is a
system that is specified independently of any specific platform and which is
realized in platform-specific ways on different platforms. A virtual machine is
a platform, and such a model is specific to that platform. But that model is also
platform independent with respect to the class of different platforms on which
that virtual machine has been implemented. This is because such models are
unaffected by the underlying platform and, hence, fully conform to the
criterion of platform independence defined in the MDA Guide.

For a PIM based on a virtual machine, transformations are not necessary.
Instead, it is the PIM of the virtual machine itself that needs to be transformed
to a PSM for a particular platform. When this is done independently of any
specific system, the platform specific virtual machine be used with any system
targeted to that virtual machine.

49

Lovelace Computing

Model
Transformation

Model transformation is the process of
converting one model to
another model
of the same system.

50

Lovelace Computing

Model
Transformation

Model transformation is the process of
converting one model to
another model
of the same system.

51

Lovelace Computing

Questions?

Does anyone have a different take
on the concepts discussed so far?

Platform?
Model?
Transformation?

52

Lovelace Computing

Questions?

Does anyone have a different take
on the concepts discussed so far?

… of the same system?

53

Lovelace Computing

Model
Transformation

Model transformation is the process of
converting one model to
another model
of the same system
or
a model
of a different system.

As we will come to discuss, model transformation can be an extremely general concept,
and MDA tools provide very general model transformation capabilities.

The point that “of the same system” wants to make is this:

In the straightforward application of MDA to build or modify a system, the
transformation from PIM to PSM is about adding platform specific detail about a
system to a platform independent specification or description of that system.

If we think about it for a minute, it becomes clear that the relation, same as, does not
even apply. Since platform specific detail is hidden in the platform independent
viewpoint, it is not possible to determine if the PIM and PSM specify the same system.
What is the case is that the PIM specifies a class of equivalent systems for different
platoforms ; the systems are equivalent in that they correspond to the same PIM.

Here is something that is true, exactly: A PIM specifies a whole class of systems, and
the system specified by a PSM produced using that PIM is a member of that class of
systems.

But, because of the generality of model transformation, it is not true that any model
produced by using a PIM and a transformation is a member of the class of models
specified by that PIM. A model transformation may produce a target model that
represents a system entirely different from the system represented by the source model.

Example–In a product line architecture, models of different products might be
produced from the same starting model using transformations.

54

Lovelace Computing

Implementation

An implementation is a specification,
which provides all the information needed
to construct a system and
to put it into operation.

55

Lovelace Computing

Separation
of concerns

— specifying a system independently of
the platform that supports it

— specifying platforms
— choosing a particular platform for the

system
— transforming the specification into one

for a particular platform.

Separation of concerns is an old engineering principle. Dijkstra is generally
credited for bringing this idea to the attention of software folk. [21]

[21] Dijkstra, A Discipline of Programming, Prentice Hall, 1976

Dijkstra: “I have a small mind and can only comprehend one thing at a time.”

Gries: “When faced with any large task, it is usually best to put aside some of
its aspects for a moment and concentrate on others.”

Dijkstra: “Study in depth an aspect of one's subject matter in isolation, for the
sake of its own consistency, all the time knowing that

one is occupying oneself with only one of the aspects.”

56

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

57

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

58

Lovelace Computing

Model

Domain model
Computation independent model
Platform independent model

59

Lovelace Computing

Domain model

— describes the situation
in which a system will be used

— may hide much or all information
about the use of automated
data processing systems

—not only as an aid to understanding,
but also a source of shared vocabulary

A model that describes the situation in which a system will be used
provides a valuable starting point. Such a model is sometimes called a
domain model or a business model. It may hide much or all
information about the use of automated data processing systems.
It is useful, not only as an aid to understanding a problem, but also as a
source of a shared vocabulary for use in other models.

60

Lovelace Computing

Computation independent
model

— the system in the environment
in which it will operate

— independent of how
the system is implemented.

—perhaps ODP enterprise and
information viewpoint models

If a model of a system is prepared showing the system in the
environment in which it will operate, that model will help to
understand exactly what the system is to do. A model using the
computation independent viewpoint is independent of how the system
is implemented.
A computation independent model might consist of two UML models,
from the ODP enterprise and information viewpoints. It might include
several models from these viewpoints, some providing more detail
than others, or focusing on particular concerns of a viewpoint.

61

Lovelace Computing

Platform independent
model

— describes the system,
but does not show details of
its use of its platform

— perhaps ODP enterprise, information
and computational viewpoint models

A platform independent model, a PIM, is built. It describes the system,
but does not show details of its use of its platform.
A PIM might consist of enterprise, information and computational ODP
viewpoint specifications.
Though independent of some class of platforms, a platform independent model
will be suited for a particular architectural style, or several.

62

Lovelace Computing

Platform
model

— choose a platform (or several) that
enables implementation of the system
with the desired architectural qualities.

— detailed model describing the platform
expressed, perhaps, in
MOF and OCL and
stored in a MOF compliant repository.

The architect will then choose a platform (or several) that enables
implementation of the system with the desired architectural qualities.

The architect will have at hand a model of that platform. Often, at present, this
model is in the form of software and hardware manuals or is even in the
architect’s head. MDA will be based on detailed platform models, for
example, models expressed in MOF and OCL, and stored in a MOF compliant
repository.

63

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

64

Lovelace Computing

Mapping

— provides specifications for
transformation of a PIM into a PSM
for a particular platform.

An MDA mapping provides specifications for transformation of a PIM
into a PSM for a particular platform. The platform model will
determine the nature of the mapping.
Examples
A platform model for EJB includes the Home and RemoteInterface as well as
Bean classes and Container Managed Persistence.

Two examples, illustrating different approaches:
Example 1: An EDOC ECA PIM contains attributes which indicate whether
an Entity in that model is managed or not, and whether it is remote or not. A
mapping from ECA to EJB will state that every managed ECA entity will
result in a Home class, and that every remoteable ECA entity will result in a
RemoteInterface. Marks associated with the mapping (with required
parameter values) are supplied by an architect during the mapping process to
indicate the style of EJB persistent storage to be used for each ECA entity, as
no information about this concept is stored in the PIM.
Example 2: A UML PIM to EJB mapping provides marks to be used to guide
the PIM to PSM transformation. It also includes templates or patterns for
code generation and for configuration of a server. Marking a UML class with
the Session mark results in the transformation of that class according to the
mapping into a session bean and other supporting classes.

65

Lovelace Computing

Model type
mapping

A mapping from any model built
using types specified in the PIM language
to models expressed
using types from a PSM language.

A model type mapping specifies a mapping from any model built using
types specified in the PIM language to models expressed using types
from a PSM language.
A PIM is prepared using a platform independent model of types. The
architect chooses types specified by that model to build the PIM,
according to the requirements of the application. One or more model
mappings each specify a mapping from elements of the platform
independent types to platform specific types. These mappings may also
specify mapping rules in terms of the instance values to be found in
models expressed in the PIM language.
Example: If the attribute sharable of class, Entity, is true for a particular
PIM model instance of type, Entity, then map to an EJB Entity, otherwise map
to a Java Class.
These kinds of rules may also map things according to patterns of type
usages in the PIM.
Example: If pattern exists where an instance of class, Entity, has a manages
association to an instance of class, Document, whose attribute, persistent, is
set, then map that instance to an EJB Entity which manages whatever is
mapped from the instance of Document instance identified by the pattern.

66

Lovelace Computing

Metamodel
mapping

A model type mapping,
where the types specified
using MOF metamodels.

A metamodel mapping is a specific example of a model type mapping, where
the types of model elements in the PIM and the PSM are both specified as
MOF metamodels. In this case the mapping gives rules and/or algorithms
expressed in terms of all instances of types in the metamodel specifying the
PIM language resulting in the generation of instances of types in the
metamodel specifying the PSM language(s).

Notice that we have a different meaning of ‘type’ here. In a model type
mapping the types are in the language of the model; in a metamodel mapping
the types are from a metamodel.

If the previous paragraph seems muddled or hard to follow, or off base, that is
one more symptom of the meta-muddle we find ourselves in.

67

Lovelace Computing

Mapping
with other types

The types used in a mapping
may be expressed in other languages,
including a natural language.

The types available to model the PSM (or even the PIM) may not be
specified as a MOF metamodel. For example, the CORBA IDL language
provides for the expression of types available in CORBA PSMs. In this
case mappings can be expressed as transformations of instances of
types in the PIM, into instances of types in the PSM expressed in other
languages, including natural language.

68

Lovelace Computing

Model instance
mappings

Marks the model elements in the PIM
to be transformed in particular way.

Another approach to mapping models is to identify model elements in
the PIM which should be transformed in particular way, given the
choice of a specific platform for the PSM.
Model instance mappings will use marks. We’ll discuss these shortly.

69

Lovelace Computing

Combined
type and instance mapping

Combines type and instance mapping.

Most mappings, however, will consist of some combination of the
above approaches.
A model type mapping is only capable of expressing transformations in
terms of rules about things of one type in the PIM resulting in the
generation of some thing(s) of some (one or more) type(s) in the PSM.
However, without the ability for the architect to also mark the model
with additional information for use by the transformation, the mapping
will be deterministic, and will rely wholly on Platform Independent
information to generate the PSM. Rules in the mapping will often
specify that certain types in the PIM must be marked with one of a set
of marks in order that the PSM will have the right non-functional or
stylistic characteristics, which cannot be determined from information
in the PIM.
Likewise, every transformation of model instances has implicit type
constraints which the architect marking the model must obey in order
for the transformation to make sense. For example, marking an
Association End in a UML model with the mark, ‘Entity,’ makes no
sense, whereas marking it with the mark, ‘RMI navigable,’ does.
Implicitly each type of model element in the PIM is only suitable for
certain marks, which indicate what type of model element will be
generated in the PSM. Transformations based on marking instances
will either explicitly state which marks are suitable for which types in
the PIM, or these type constraints will be implicitly understood by the
user of the marks.

70

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

71

Lovelace Computing

Mark

— represents a concept in the PSM
— is applied to an element of the PIM

to indicate how that element
is to be transformed

— not a part of the PIM

Many model mappings will define marks. A mark represents a concept
in the PSM, and is applied to an element of the PIM, to indicate how
that element is to be transformed.
The marks, being platform specific, are not a part of the platform
independent model. The architect takes the platform independent
model and marks it for use on a particular platform. The marked PIM
is then used to prepare a platform specific model for that platform.
The marks can be thought of as being applied to a transparent layer placed over
the model.

72

Lovelace Computing

Sources
of marks

— types from a model
— roles; for example, from patterns
— stereotypes from a UML profile
— elements from a MOF model
— model elements

specified by any metamodel

Marks may come from different sources. These include:
— types from a model, specified by classes, associations, or
other model elements
— roles from a model, for example, from patterns
— stereotypes from a UML profile
— elements from a MOF model
— model elements specified by any metamodel
Example: Entity is a mark that can be applied to classes or objects in a PIM;
this mark indicates that the Entity template of the mapping will be used in
transforming that PIM to a PSM.

Marks may also specify quality of service requirements on the
implementation. That is, instead of indicating the target of a
transformation, a mark may instead simply provide a requirement on
the target. The transformation will then choose a target appropriate to
that requirement.

73

Lovelace Computing

Mark model

In practice, a set of marks is not enough

A model of the use of the marks is needed
“a set of concepts and structuring rules”

In order for marks to be properly used, they may need to be structured,
constrained or modeled. For example a set of marks indicating
mutually exclusive alternative mappings for a concept need to be
grouped, so that an architect marking a model knows what the choices
are, and that more than one of these marks cannot be applied to the
same model element.
Some marks, especially those that indicate quality of service
requirements, may need parameters. For example, a mark, ‘Supports
simultaneous connections,’ may require a parameter to indicate an
upper bound on the number of connections that need to be supported,
or even several parameters giving details for timeouts or connection
policy.
A set of marks, instead of being supplied by a mapping, may be
specified by a mark model, which is independent of any particular
mapping. Such a set of marks can be used with different mappings. A
set of marks may also be supplied along with a UML profile; several
different mappings might be supplied with that profile.

74

Lovelace Computing

Template

A parameterized model that specifies a
particular kind of transformation.

Marks:
to indicate which template to apply
to identify parameters for the template

A mapping may also include templates, which are. These templates are like
design patterns, but may include much more specific specifications to guide
the transformation.
Templates can be used in rules for transforming a pattern of model elements
in a model type mapping into another pattern of model elements.
A set of marks can be associated with a template to indicate instances in a
model which should be transformed according to the template. Other marks
can be used to indicate which values in a model fill the parameters in the
template. This allows values in the source model to be copied into the target
model, and modified if necessary.
Example: A CORBA Component mapping might include an Entity template, which
specifies that an object in the platform independent model, which is marked, Entity,
corresponds, in a platform specific model, to two objects, of types HomeInterface and
EntityComponent, with certain connections between those objects.
Example: A CORBA mapping might provide that a client object be prepared for a
range of CORBA non-standard system exceptions or standard user exceptions and
include the necessary exception handling in each case.
Example: A mapping from the EAI metamodel to a COBOL Connector
implementation design might identify a template with an Adapter associated with a
Connector which has certain attributes as a pattern that is directly mapped to a
certain Connector type.

75

Lovelace Computing

Mapping
language

A language to describe
a transformation
of one model to another

“a set of concepts and structuring rules”

A mapping is specified using some language to describe a
transformation of one model to another. The description may be in
natural language, an algorithm in an action language, or in a model
mapping language.
Model mapping languages are an area for MDA technology adoptions.
The current MOF Query/View/Transformation RFP requests
technology submissions suited to the specification of metamodel
mappings.
A desirable quality of a mapping language is portability. This enables
use of a mapping with different tools.

76

Lovelace Computing

Marking
a model

the architect or engineer
marks elements of the PIM
to indicate the mappings to be used
to transform that PIM into a PSM

In model instance mappings the architect marks elements of the PIM to indicate
the mappings to be used to transform that PIM into a PSM.
In one simple case, a PIM element is marked once, indicating that a certain
mapping is to be used to transform that element into one or more elements in
the PSM.
In a more general case, several PIM elements are marked to indicate their roles
in some mapping. This mapping is then used to transform those PIM elements
into some different set of PSM elements, perhaps quite different in appearance.

77

Lovelace Computing

Marking
a model

A model element may have several marks
including marks for several mappings

An element of the PIM may be marked several times, with marks from different
mappings; this indicates that the element plays a role in more than one
mapping. When an element is marked in this way, it will be transformed
according to each of the mappings; the result may be additional features of the
resulting element(s) as well as additional resulting elements in the PSM.
Example: Entity is a mark in one mapping that can be applied to classes or objects in a
PIM; this mark indicates that the Entity template of the mapping will be used in
transforming that PIM to a PSM. Auditable is a mark in another mapping; this mark
indicates that changes to an object will be recorded in a write only file. When both
mappings are applied, an object marked with entity and auditable is transformed
according to the Entity template of the first mapping and with a capability to detect and
record changes.

78

Lovelace Computing

Marking
a model

A tool may ask for mapping decisions
during a transformation

This is a kind of marking

In model type transformations a mapping description, specified in terms of
rules and/or algorithms is applied to a model of the type that the mapping is
designed for. All rules and algorithms which operate on type information
automatically generate a target model, but the transformation tool asks a user
for mapping decisions in the course of transformation where a rule specifies
that information not available in the source model is required, and records
those decisions as marking of the PIM.

79

Lovelace Computing

Marking
a model

A tool should keep the markings
for use again;

but keep them separate from the model.

Model markings can be stored and subsequent transformations may use these
marking, asking only for additional decisions required by additions or changes
to the model.

80

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

81

Lovelace Computing

Transformation

— the process of converting one model to
another model of the same system

— input is the PIM and the mapping
— result is the PSM

and a record of the transformation

The next step is to take the marked PIM and transform it into a PSM.
This can be done manually, with computer assistance, or automatically.
Model transformation is the process of converting one model to another
model of the same system. The input to the transformation is the
marked PIM and the mapping. The result is the PSM and the record of
transformation.
Using model type mapping, transformation takes any PIM specified
using one model and, following the mapping, produces a PSM
specified using another model.
Using model instance mapping, transformation takes a marked PIM
and, following the mappings, as indicated by the marks, produce a
PSM.
Example:
A platform independent model of a securities trading system (a PIM) is
transformed for the CORBA component platform. The result of the
transformation is a model of that system specific to the CORBA component
platform (a PSM) and a record of transformation showing the correspondences
between the two models.

82

Lovelace Computing

Direct to code

— transform a PIM directly to code,
without producing a PSM

— or also produce a PSM,
for use in understanding
or debugging that code

In some cases, a tool will transform a PIM directly to deployable code,
without producing a PSM. Such a tool might also produce a PSM, for
use in understanding or debugging that code.

83

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

84

Lovelace Computing

Record
of transformation

— a map from each element of the PIM
to the corresponding elements of the PSM

— also shows which parts of the mapping
were used
for each part of the transformation.

The results of transforming a PIM using a particular technique are a
PSM and a record of transformation. The record of transformation
includes a map from each element of the PIM to the corresponding
elements of the PSM, and shows which parts of the mapping were used
for each part of the transformation.
Examples:
A record of transformation shows that a particular class in the PIM becomes
three classes in the PSM, related in a certain way.
A record of transformation shows that two objects that were connected directly
in the PIM are connected in the PSM via two protocol objects and an
intervening interceptor.

The record of transformation can be made available to someone
working on either PIM or PSM. An MDA modeling tool that keeps a
record of transformation may keep a PIM and PSM in synchronization
when changes are made to either.

85

Lovelace Computing

Record
of transformation

— in some cases can be used
to keep a PIM and PSM
in synchronization
when changes are made
to one or the other

The results of transforming a PIM using a particular technique are a
PSM and a record of transformation. The record of transformation
includes a map from each element of the PIM to the corresponding
elements of the PSM, and shows which parts of the mapping were used
for each part of the transformation.
Examples:
A record of transformation shows that a particular class in the PIM becomes
three classes in the PSM, related in a certain way.
A record of transformation shows that two objects that were connected directly
in the PIM are connected in the PSM via two protocol objects and an
intervening interceptor.

The record of transformation can be made available to someone
working on either PIM or PSM. An MDA modeling tool that keeps a
record of transformation may keep a PIM and PSM in synchronization
when changes are made to either.

86

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

87

Lovelace Computing

Platform specific
model

— a model of the same system
specified by the PIM

— specifies how that system
makes use of the chosen platform.

The platform specific model produced by the transformation is a model
of the same system specified by the PIM; it also specifies how that
system makes use of the chosen platform.
A PSM may provide more or less detail, depending on its purpose. A
PSM will be an implementation, if it provides all the information
needed to construct a system and to put it into operation.
A PSM that is an implementation will provide a variety of different
information, which may include program code, the intended CORBA types of
the implementation, program linking and loading specifications, deployment
descriptors, and other forms of configuration specifications.

88

Lovelace Computing

Platform specific
model

May provide more or less detail,
depending on its purpose.

89

Lovelace Computing

Implementation

Will be an implementation,
if it provides all the information needed
to construct a system and
to put it into operation.

90

Lovelace Computing

Implementation

A PSM that is an implementation
may include:

— program code
— intended CORBA types
— linking and loading specifications
— deployment descriptors
— other configuration specifications.

91

Lovelace Computing

Platform specific
model

A PSM that is an implementation
may include:

— program code
— intended CORBA or WSDL types
— linking and loading specifications
— deployment descriptors
— other configuration specifications.

92

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

93

Lovelace Computing

MDA Pattern

PIM

PSM

Transformation

The drawing illustrates the MDA pattern, by which a PIM is
transformed to a PSM.
The drawing is intended to be suggestive. The platform independent
model and other information are combined by the transformation to
produce a platform specific model.
The drawing is also intended to be generic. There are many ways in
which such a transformation may be done. However it is done, it
produces, from a platform independent model, a model specific to a
particular platform.
The box with no name represents what goes into the transformation, in
addition to the platform independent model. This varies with different
styles of MDA.

94

Lovelace Computing

Generalized
MDA Pattern

PIM

PSM

Transformation

a model

another

This drawing is more generic. There are many kinds of model
transformations. Many of the same tools that will transform a PIM to a
PSM can be used for other kinds of transformation of one kind of model
to another.

95

Lovelace Computing

Platform
Independent

Model

Platform
Specific
Model

Transformation

Platform

Platform
Information

Information about the chosen platform is required to transform a PIM to a
PSM. This information is sometimes imbedded in the transformation tool.
Other tools accept information about the platform as input to the
transformation process.

96

Lovelace Computing

PIM

PSM

Additional
Information

Additional Information

The drawing extends the simple MDA pattern to show the use of
additional information.
In addition to the PIM and the platform information, additional
information can be supplied to guide the transformation.
Examples: A particular architectural style may be specified. Information may
be added to connectors to specify quality of service. Selections of particular
implementations may be made, where more than one is provided by the
transformation. Data access patterns may be specified.

Often the additional information will draw on the practical knowledge of the
designer. This will be both knowledge of the application domain and
knowledge of the platform.

97

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Combined Type and Instance
Pattern application
Model merging

98

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Combined Type and Instance
Pattern application
Model merging

99

Lovelace Computing

PIM

Platform

Marks

Mapping

PSM

marked
PIM

Transformation

Marks

The drawing expands the MDA pattern to show more detail of one of
the ways that a transformation may be done.
The drawing is intended to be suggestive. A particular platform is
chosen. A mapping for this platform is available or is prepared. This
mapping includes a set of marks. The marks are used to mark elements
of the model to guide the transformation of the model. The marked
PIM is further transformed, using the mapping, to produce the PSM.

100

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Combined Type and Instance
Pattern application
Model merging

101

Lovelace Computing

PIM

Transformation

Platform
Specific

Metamodel

Platform
Independent
Metamodel

Transformation
Specification

source language

target language

language used

language used
PSM

Metamodel
transformation

The drawing expands the MDA pattern in a different way, to show
more detail of another of the ways that a transformation may be done.
The drawing is intended to be suggestive. A model is prepared using
a platform independent language specified by a metamodel. A
particular platform is chosen. A specification of a transformation for
this platform is available or is prepared. This transformation
specification is in terms of a mapping between metamodels. The
mapping guides the transformation of the PIM to produce the PSM.
Example: The platform independent metamodel is the EDOC ECA Business
Process Model, and the platform specific metamodel is a MOF model of a
workflow engine. The transformation specification is a MOF QVT
transformation model. The transformation is carried out by a transformation
engine created by a tool, which uses a pair of MOF models to build an engine
for a specific transformation.

102

Lovelace Computing

Metamodel
transformation

Notice that this is about specifying
a transformation
in terms of metamodels.

Not about transforming metamodels.

Notice that Metamodel transformation is about specifying a transformation in
terms of metamodels.

It is not about transforming metamodels. Of course, metamodels are models.
So one metamodel can be transformed into another, using the same general
model transformation techniques as are used with any other models.

103

Lovelace Computing

Metamodel
transformation

for each element in the PIM
find corresponding element in PIM metamodel
using transformation model,
find corresponding element(s) in PSM Metamodel
for each found corresponding element
add an "instance" of that to to the PSM
copy values from PIM to PSM, with changes
(<className> to <className> + "Bean"
<attributeName> to "get" + <attributeName>
"<<realizes>>" + <interfaceName> to
" extends " + "javax.ejb.EJBObject" +

" implements " + <interfaceName>
)

Here is a simplified transformation specification, using the metamodel
transformation style.

for each element in the PIM
find corresponding element in PIM metamodel
using transformation model,
find corresponding element(s) in PSM Metamodel
for each found corresponding element
add an "instance" of that to to the PSM
copy values from PIM to PSM, with changes
(<className> to <className> + "Bean"
<attributeName> to "get" + <attributeName>
"<<realizes>>" + <interfaceName> to

" extends " + "javax.ejb.EJBObject" +
" implements " + <interfaceName>

)

104

Lovelace Computing

Metamodel
transformation

for each element in the PIM
find corresponding element in PIM metamodel
using transformation model,
find corresponding element(s) in PSM Metamodel
for each found corresponding element
add an "instance" of that to to the PSM
copy values from PIM to PSM, with changes
(<className> to <className> + "Bean"
<attributeName> to "get" + <attributeName>
"<<realizes>>" + <interfaceName> to
" extends " + "javax.ejb.EJBObject" +

" implements " + <interfaceName>
)

Notice:
"<<realizes>>" + <interfaceName> to

" extends " + "javax.ejb.EJBObject" +
" implements " + <interfaceName>

This mentions the class, javax.ejb.EJBObject. This class does not
appear in the target metamodel. It is a class in the PSM.

It is clear to me that there is something wrong with the explanation of this style
in the MDA Guide. Even though practitioners of this style were active in
preparation of the Guide.

(As I wrote earlier, I’m to blame, not only for errors in this tutorial, but, as
editor, for errors in the MDA Guide.)

105

Lovelace Computing

Metamodel
transformation

Class

<<Entity>>
Dog

EntityClass

Class

Dog

EJBObject

The class EJBObject does not, can not, appear in the target metamodel. So, in
this case, anyway, the transformation can be specified in the language of the
metamodels.

106

Lovelace Computing

Metamodel
transformation

for each element in the PIM
find corresponding element in PIM metamodel
using transformation model,
find corresponding element(s) in PSM Metamodel
for each found corresponding element
add an "instance" of that to to the PSM
copy values from PIM to PSM, with changes
(<className> to <className> + "Bean"
<attributeName> to "get" + <attributeName>
"<<realizes>>" + <interfaceName> to
" extends " + "javax.ejb.EJBObject" +

" implements " + <interfaceName>
)

Actually, we have skipped past a simpler example. “Bean” is a string. There
are no strings in the target metamodel. There is, of course, the class, String,
but that is a class, not a string. “Bean” can’t appear in the target metamodel.

107

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Combined Type and Instance
Pattern application
Model merging

108

Lovelace Computing

PIM

Transformation

Platform
Specific
Types

Platform
Independent

Types

Transformation
Specification

source types and patterns

target types and patterns

subtypes of

subtypes of
PSM

Model
transformation

The drawing shows yet another of the ways that a transformation may
be done.
The drawing is intended to be suggestive. A model is prepared using
platform independent types specified in a model. The types may be
part of a software framework. The elements in the PIM are subtypes of
the platform independent types. A particular platform is chosen. A
specification of a transformation for this platform is available or is
prepared. This transformation specification is in terms of a mapping
between the platform independent types and the platform dependent
types. The elements in the PSM are subtypes of the platform specific
types.
Example: The platform independent types declare generic capabilities and
features. The platform specific types are mix-in classes and composite classes
that provide the capabilities and features specific to a particular type of
platform.
This approach differs from metamodel mapping primarily in that types
specified in a model are used for the mapping, instead of concepts
specified by a metamodel.

109

Lovelace Computing

Model
transformation

PIM

Transformation

Platform
Specific
Types

Platform
Independent

Types

Transformation
Specification

source types and patterns

target types and patterns

subtypes &
individuals of

subtypes &
individuals ofPSM

Here again, we will often need to use specific individuals, in addition to types.
So the text on the horizontal arrows needs to be changed to read ’subtypes and
individuals of.’

110

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Combined Type and Instance
Pattern application
Model merging

111

Lovelace Computing

Combined
type and instance mapping

Combines type and instance mapping.

Most mappings, will necessarily consist of some combination of the
above approaches.
A model type mapping is only capable of expressing transformations in
terms of rules about things of one type in the PIM resulting in the
generation of some thing(s) of some (one or more) type(s) in the PSM.
However, without the ability for the architect to also mark the model
with additional information for use by the transformation, the mapping
will be deterministic, and will rely wholly on Platform Independent
information to generate the PSM. Rules in the mapping will often
specify that certain types in the PIM must be marked with one of a set
of marks in order that the PSM will have the right non-functional or
stylistic characteristics, which cannot be determined from information
in the PIM.
Likewise, every transformation of model instances has implicit type
constraints which the architect marking the model must obey in order
for the transformation to make sense. For example, marking an
Association End in a UML model with the mark, ‘Entity,’ makes no
sense, whereas marking it with the mark, ‘RMI navigable,’ does.
Implicitly each type of model element in the PIM is only suitable for
certain marks, which indicate what type of model element will be
generated in the PSM. Transformations based on marking instances
will either explicitly state which marks are suitable for which types in
the PIM, or these type constraints will be implicitly understood by the
user of the marks.

112

Lovelace Computing

Combined
type and instance mapping

PIM

Transformation

Platform
Specific
Types

Platform
Independent

Types

Transformation
Specification

source types and patterns

target types and patterns

subtypes &
individuals of

subtypes &
individuals ofPSM

You see that this drawing is identical to the previous drawing.

113

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Combined Type and Instance
Pattern application
Model merging

114

Lovelace Computing

Pattern
application

PIM

Transformation

Platform
Specific

Types & Patterns

Platform
Independent

Types & Patterns

Transformation
Specification

source types

target types

subtypes &
individuals of

subtypes &
individuals ofPSM

Extension of the model and metamodel mapping approaches include patterns
along with the types or the modeling language concepts.

In addition to platform independent types, a generic model can supply
patterns. Both the types and patterns can be mapped to platform
specific types and patterns.
Example: A platform independent model uses a generic model defining object
types corresponding to the concepts of the RM-ODP Engineering Language,
and patterns for their use, corresponding to the structuring rules of the
Engineering Language. The transformation specification maps these types to
object types to be used in a CORBA implementation, and these patterns to
corresponding patterns in the Common ORB Architecture. ODP stubs
become CORBA stubs and skeletons; the functions of ODP binders are mapped
to ORB and object adapter functions; ODP interceptors become CORBA
interceptors…
The metamodel mapping approach can use patterns in the same way.

115

Lovelace Computing

PIM

Platform

Pattern
Names

Patterns

PSM

marked
PIM

Transformation

Pattern names
as marks

The drawing shows another way to use patterns: as the names of platform
specific marks, that is, the names of design patterns that are specific to a
platform.

116

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Combined Type and Instance
Pattern application
Model merging

117

Lovelace Computing

PIM

PSM

Another
Model

Model
Merge

Model Merge

The drawing expands the MDA pattern in a different way to show
more detail of another one of the ways that a transformation may be
done.
Again, the drawing is intended to be suggestive. It is also generic.
There are several MDA approaches that are based on merging models.
An earlier example shows the use of patterns and pattern application.
At least some cases of pattern application can be regarded as one kind
of model merging.
The 2U submission for UML 2 proposed model merging as a technique
for language specification. Much of the proposed technique has been
incorporated in the adopted UML 2.

118

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Combined Type and Instance
Pattern application
Model merging

119

Lovelace Computing

PIM

PSM

Additional
Information

Additional Information

The drawing extends the simple MDA pattern to show the use of
additional information.
In addition to the PIM and the platform specific marks, additional
information can be supplied to guide the transformation.
Examples: A particular architectural style may be specified. Information may
be added to connectors to specify quality of service. Selections of particular
implementations may be made, where more than one is provided by the
transformation. Data access patterns may be specified.

Often the additional information will draw on the practical knowledge
of the designer. This will be both knowledge of the application domain
and knowledge of the platform.

120

Lovelace Computing

PIM

Platform

Pattern
Names

Patterns

PSM

marked
PIM

Transformation

Additional
Information

Additional
Information

Patterns &
additional information

The drawing further expands the MDA pattern to show the use of
additional information in a particular transformation technique.
The drawing is intended to be suggestive. In the process of preparing
a PIM, in addition to using the pattern names provided, other
information can be added to produce the marked PIM. More
information, in addition to the patterns, can be used when the marked
PIM is further transformed to produce the PSM.

121

Lovelace Computing

MDA
transformations

Model transformations are carried out
in many ways.

There is a range of tool support for model transformation.
Transformations can use different mixtures of manual and automatic
transformation. There are different approaches to putting into a model
the information necessary for a transformation from PIM to PSM. Four
different transformation approaches described here illustrate the range
of possibilities: manual transformation, transforming a PIM that is
prepared using a profile, transformation using patterns and markings,
and automatic transformation.

122

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

123

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

In order to make the transformation from PIM to PSM, design decisions
must be made. These design decisions can be made during the process
of developing a design that conforms to engineering requirements on
the implementation. This is a useful approach, because these decisions
are considered and taken in the context of a specific implementation
design.
This manual transformation process is not greatly different from how
much good software design work has been done for years. The MDA
approach adds value in two ways:
— the explicit distinction between a platform independent model and
the transformed platform specific model,
— the record of the transformation.

124

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

A PIM may be prepared using a platform independent UML profile.
This model may be transformed into a PSM expressed using a second,
platform specific UML profile.
The transformation may involve marking the PIM using marks
provided with the platform specific profile.
A PIM may be prepared using a platform independent UML profile.
This model may be transformed into a PSM expressed using a second,
platform specific UML profile.
The transformation may involve marking the PIM using marks
provided with the platform specific profile.

It can be argued that this distinction is spurious: What is the difference
between using a profile as a language for a PIM and/or a PSM, and using
plain old UML, or a metamodel? As we know there are some models
expressible as either a UML profile, or in some other language (e.g. CORBA –
UML Profile, IDL, or CCM metamodel, ECA – UML Profile or metamodel).
This does not dictate the way in which transformations can be achieved. In fact
UML Profiles are quite amenable to metamodel transformation, as UML has a
valid MOF metamodel – in UML 2.0 this will be even more direct.

125

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

Patterns may be used in the specification of a mapping. The mapping
includes a pattern and marks corresponding to some elements of that
pattern.
In model instance transformations the specified marks are then used to
prepare a marked PIM. The marked elements of the PIM are
transformed according to the pattern to produce the PSM.
Example: A decorator pattern with two roles, decoration and decorated
supplied a mark, decorated. When this mark is applied to a class in a model,
the transformation might produce a class corresponding to that class, with
additional operations and attribute, a new class, corresponding to the
decoration, and an association between those classes.

126

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

Several patterns may be combined to produce a new pattern. New
marks can then be specified for use with the new pattern.
In model type transformations rules will specify that all elements in the
PIM which match a particular pattern will be transformed into
instances of another pattern in the PSM. The marks will be used to bind
values in the matched part of the PIM to the appropriate slots in the
generated PSM. In this usage the target patterns can be thought of as
templates for generating the PSM, and the use of marks as a way of
binding the template parameters.
Example: A mapping from EDOC ECA to EJB might include a pattern of
ECA types identifying appropriate ProcessComponents and their associated
document types as suitable for mapping to EJB Entities and their Remote
Interfaces and container managed data classes. Marks in the source pattern
will correspond to marks in the target pattern. For example a mark, ‘Name,’
might be used to identify the attribute, ‘name,’ of each matched
ProcessComponent and make it the classname of the Entity’s Remote Interface.

127

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

There are contexts in which a PIM can provide all the information
needed for implementation, and there is no need to add marks or use
data from additional profiles, in order to be able to generate code. One
such is that of mature component-based development, where
middleware provides a full set of services, and where the necessary
architectural decisions are made once for a number of projects, all
building similar systems (for example, there is a component based
product line architecture in place). These decisions are implemented in
tools, development processes, templates, program libraries, and code
generators.
In such a context, it is possible for an application developer to build a
PIM that is complete as to classification, structure, invariants, and pre-
and post-conditions. The developer can then specify the required
behavior directly in the model, using an action language. This makes
the PIM computationally complete; that is, the PIM contains all the
information necessary to produce computer program code.
In this context, the developer need never see a PSM, nor is it necessary
to add additional information to the PIM, other than that already
available to the transformation tool. The tool interprets the model
directly or transforms the model directly to program code.

128

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

Such a PIM, in a mature component development shop, with an established
architectural style and with platform specific engineering decisions already
made and being reused, can be used to generate code (i.e. components in their
code form) not only to different CORBA Components or J2EE platforms, but
also to some of the other application server platforms.
This assumes that someone has prepared for re-use:
(a) a model of the architectural style
(b) detail within that model, such as a PIM type system, that can be
automatically mapped to the various target platforms
(c) the necessary tool support to deliver the model to the developers in the
form of profiles, model conformance checks, links to an IDE, supporting
processes, and so forth
(d) a mapping for each target platform.
The point is that, with such development environment support, for a given
application, the application developer need develop only a PIM, and code can
be directly generated from that PIM.
The information that would otherwise be in a visible PSM is effectively pre-
packaged, and provided to the application developer within the development
environment.
As mentioned, there may be an advantage to providing the developer a model
of the generated code.

129

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

130

Lovelace Computing

Input to
transformations

Patterns
Technical choices
Quality needs

131

Lovelace Computing

Input to
transformations

Patterns
Technical choices
Quality needs

Generic transformation techniques can work with patterns supplied by
the architect or builder. Different patterns, chosen by the architect, or
by a transformation tool using supplied selection criteria.
Patterns are also important in the description of groups of concepts in
one model that correspond to a concept, or different group of concepts
in another model when specifying a type-based transformation. Tools
will then be responsible for matching the patterns in the source model
and using the patterns in the target model as templates for creating the
new model.

132

Lovelace Computing

Input to
transformations

Patterns
Technical choices
Quality needs

Technical choices of all kinds can be made by the architect or builder and used
to guide the transformation. Technical choices might also be made by analysis
tools working with the PIM, and then used in manual or automatic
transformation. Most approaches will use some combination of some
automated transformation with architect-chosen manual input to the
transformation.

133

Lovelace Computing

Input to
transformations

Patterns
Technical choices
Quality needs

A whole range of quality of service requirements can be used to guide
transformations. In a transformation to a PIM, specific transformation choices
will be made according to the particular qualities required at each
conformance point in the model.

134

Lovelace Computing

Input to
transformations

Patterns
Technical choices
Quality needs

135

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

So far, we have focused on a straightforward PIM to PSM transformation.
Now, let’s discuss several other uses of Model-Driven Architecture.

136

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

Many systems are built on more than one platform. An MDA
transformation can use marks from several different platform models to
transform a PIM into a PSM with parts of the system on several
different platforms.
Example: A trading system PIM is transformed to a web services front end
and a mainframe back office system.
Example: A system needs to communicate with several existing systems.
Several means of communication are available, IIOP, RMI, and SOAP. The
architect chooses the means most suitable for each connector and marks that
connector with a mark from the set for that means.

137

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

A PIM can specify a system, with several parts, each under separate
control. The transformation of that PIM to a PSM can be made
recognizing that the system is federated. That PIM can also be
transformed into different PSMs for use by different parts of the
system.
Example: Several trading partners want to share a common software design
and produce interoperable implementations, each partner using a different
platform.
This approach will require the identification of generic bridges between the
platforms, or the generation of bridges specialized for the system. The use of
platform independent models for specifying the whole system will provide
generation tools with some, or most of the information needed to perform
specific bridging, as long as a generic interoperability mechanism is available.
No current standard solutions exist in this space. This is a topic for future
standards in OMG.

138

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

The MDA pattern includes a PIM, a platform, and a PSM. The PSM is
specific to that platform. The PIM is platform independent because it is
not dependent on any particular platform of that class. What counts as
a PIM depends on the class of platform that the MDA user has in mind.
Example: An OMG domain task force may be conducting an RFP process for a
domain specific technology. It requests a PIM and a PSM for a generic
component technology platform. At the same time, an OMG platform task
force may be conducting an RFP process for an improved component model,
backward compatible with the CORBA Component Model, CCM. This task
force requests a PIM for a component technology and one or more PSMs for
that technology. What is a PSM to the first task force is a PIM to the second.

139

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

The MDA pattern can be applied several times in succession. What is a
PSM resulting from one application of the pattern, will be a PIM in the
next application.
Example: In case of CORBA the platform is specified by a set of interfaces
and usage patterns that constitute the CORBA Core Specification [CORBA].
The CORBA platform is independent of operating systems and programming
languages. The OMG Trading Object Service specification [TOS] (consisting
of interface specifications in OMG Interface Definition Language (OMG IDL))
can be considered to be a PIM from the viewpoint of CORBA, because it is
independent of operating systems and programming languages. When the IDL
to C++ Language Mapping specification is applied to the Trading Service
PIM, the C++-specific result can be considered to be a PSM for the Trading
Service, where the platform is the C++ language. Thus the IDL to C++
Language Mapping specification [IDLC++] determines the mapping from the
Trading Service PIM to the Trading Service PSM.

140

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

The same approaches that enable transformation of a PIM to a PSM can be
used to transform any model into another, related model.

141

Lovelace Computing

General
transformations

Metamodel B

Model 1

Transformation

Metamodel A

Transformation
Model

source language

target language

language used

language used
Model 2

The drawing illustrates the general case of a metamodel mapping
transformation. Model 1 and Model 2 may be any models, and the
transformation need not have anything to do with platforms.
Examples: A generic model of financial transactions is transformed to one
specific to a particular kind of transaction. A generic model of financial
transactions is transformed to one specific to the trade practices of a particular
exchange. An internationalized model of an application is transformed to one
specific to the customs of a particular region.
The drawing and example use metamodel mapping to illustrate the point. Any
of the MDA approaches discussed in this Guide can be used for general
model-to-model transformations.

142

Lovelace Computing

General
transformations

Test harnesses
(Some) test cases
Configuration specifications
Documentation
…

The drawing illustrates the general case of a metamodel mapping
transformation. Model 1 and Model 2 may be any models, and the
transformation need not have anything to do with platforms.
Examples: A generic model of financial transactions is transformed to one
specific to a particular kind of transaction. A generic model of financial
transactions is transformed to one specific to the trade practices of a particular
exchange. An internationalized model of an application is transformed to one
specific to the customs of a particular region.
The drawing and example use metamodel mapping to illustrate the point. Any
of the MDA approaches discussed in this Guide can be used for general
model-to-model transformations.

143

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

Mappings may be reused in several ways. These include extension,
combination, and bridging.

144

Lovelace Computing

Reuse:
Extension

Extension uses a base mapping
to create a derived mapping
by incremental modification

Extension uses a base mapping to create a derived mapping by
incremental modification. The incremental modifications may add to
or alter the properties of the base mapping to obtain the derived
mapping.
Mappings can be arranged in an inheritance hierarchy according to
derived base mapping relationships. This is the interpretation of
mapping inheritance in the MDA. If mappings can have several base
mappings, inheritance is said to be multiple. If the criteria prohibit
suppression of properties from the base mappings, inheritance is said
to be strict.
Example: Given a mapping from UML class diagrams to generic CORBA
models, the mapping can be extended to make a mapping for a specific vendor
of a CORBA system.

145

Lovelace Computing

Reuse:
Combination

Combination uses
two or more mappings
to create a new mapping.

Combination uses two or more mappings to create a new mapping.
The characteristics of the new mapping are determined by the
mappings being combined and by the way they are combined. The
effect of the application of a combined mapping is the corresponding
combination of the effects of the original mappings.
Ways in which mappings may be combined include sequential
combination and concurrent combination. The concept of a
combination of mappings will always be used in a particular sense,
identifying a particular means of combination.
Examples:
Given a mapping from platform independent models to component style
models and a mapping from component style models to EJB code. A sequential
combination applies the mappings successively to produce a mapping from
PIM to EJB code. If instead, the second mapping is for transforming
component style models to CORBA Component Model code, the sequential
combination is for transforming PIMs to CCM code.
Given a mapping from PIMs to CCM specific models, which includes a mark
for container managed persistence and a mark for component managed
persistence and another mapping from PIMs to high performance and high
availability indexed sequential file access. A concurrent combination applies
both of the mappings concurrently to produce a PSM in which some objects
use CCM persistence services and others use the file access platform.

146

Lovelace Computing

Reuse:
Bridging

Bridging uses mappings for two platforms
to enable interoperability.

An interoperability mapping uses mappings for two different
platforms. These are combined to create a mapping to transform a PIM
into a PSM in which some objects are on one platform and others on the
second. This mapping is then extended further to include connectors
that bridge between the two platforms and specifications for the use of
these connectors in a transformation. The resulting mapping is used to
transform a PIM into a PSM of a system that makes use of both
platforms and provides for the interoperability of the subsystems on
the different platforms.

147

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

148

Lovelace Computing

Other MDA
capabilities

Test harnesses
(Some) test cases
Configuration specifications
Documentation
…
What else?

Transformations can produce many kinds of results.

149

Lovelace Computing

MDA
tools

MOF Repository (“Facility”)
MOF Query, View, Transformation
MOF Versioning

UML, an Action Language, and OCL

Transformation tools
MDA IDEs

…

UML, an Action Language, and OCL are needed as a package, if there is to be
code generation, instead of just skeleton generation.

150

Lovelace Computing

Using the
MDA pattern

151

Lovelace Computing

What is independent?

The MDA pattern may be applied more than once.

152

Lovelace Computing

A
platform independent model

PIM

The original PIM is an application model, designed to be independent of many
platform choices.

153

Lovelace Computing

The model
transformed

PIM

PSM

It is transformed to a PSM specific to component platforms. But the
transformation has been carried out so that the model remains independent of
the choice of a particular component platform.

154

Lovelace Computing

The model
transformed again

PIM

PSM

The MDA pattern is applied again.

The model in the role of PSM in the first transformation is in the role of PIM
in the second transformation. The resulting PSM is specific to CORBA
Components.

155

Lovelace Computing

The model transformed
a third time

PSM

PIM

PIM

It may be desirable to transform this model again, to make specialized use of
the platform in order to achieve a certain quality of service, perhaps to meet an
availability requirement.

156

Lovelace Computing

The model transformed
a third time

PSM

PIM

The original PIM, after three transformations, gives a PSM for high
availability on a CORBA Components platform.

157

Lovelace Computing

The model transformed
a third time

PSM

PIM

PSM

PIM

This can be seen as a single transformation

158

Lovelace Computing

What is a platform?

Serial transformations of this sort may or may not be common in
practice. The example does, however, raise an altogether different
question:
Wait a minute, just what counts as a platform, exactly?

159

Lovelace Computing

Some notation

160

Lovelace Computing

Some notation

A system consists of one or more applications,
supported by one or more platforms

An application

161

Lovelace Computing

Some notation

A platform

162

Lovelace Computing

A platform specific
model

PIM

PSM

The PIM on the left is a model of the application on the right; this model is in
the platform independent role. The PSM on the left is a platform specific
model of the application, for the platform shown on the right.

163

Lovelace Computing

Another platform
specific model

PIM

This is the same application and platform, from a different viewpoint.

164

Lovelace Computing

What counts as a platform?

To be adopted, a submitted technology must include a PIM and at least
one PSM; in addition, there must be an implementation or a
commitment to provide an implementation within a year. These are
three different views of the same application with its platform. The
dashed lines enclose the parts of the technology that are, from the
different viewpoints, considered to be the implementation of a
platform.
Which viewpoint is taken depends on the needs of the user of the
model.
Any of the parts of the model enclosed in the dashed line may be considered to
be the platform. Wherever it is considered to start, the platform goes all the
way down to a complete implementation.

165

Lovelace Computing

Part of a platform
hidden by abstraction

A PSM is not required to include all details of the platform. But, by
definition, an implementation must “provide the information needed to
create an object and to allow the object to participate in providing an
appropriate set of services.”
In the illustration, some of the details of the platform that supports the
application are hidden. For example, a PSM specific to the CORBA
platform may hide the details of the programming language and
operating system. A PSM specific to CORBA Components may hide
the details of CORBA along with the programming language and
operating system.

166

Lovelace Computing

Part of a platform
hidden by abstraction

When a platform provides a degree of portability, it is appropriate to
hide the details of the particular supporting platform, since portability
makes it possible to choose one or another supporting platform.
The entire platform or set of platforms is there in an implementation,
even if hidden in a PSM.
To repeat this: a PSM may or may not include a detailed model of the
platform. If it does not, either it is an abstract model, that hides those
details, or it makes reference (explicit or implicit) to another model or
models that provide the details. It is not a PSM unless it can be used to
produce an implementation. So it must include all details necessary for
an implementation, or those details must be included by reference.
Suppose, for example, that a PSM is specific to CORBA. Then it need
not include all the details necessary to implement CORBA, because it
makes implicit (or better yet, explicit) reference to the specifications of
those CORBA capabilities it uses. Either these specifications are
available to complete the PSM, or actual platforms are available which
will provide the support required to complete the implementation (in
the case of CORBA, both).

167

Lovelace Computing

Part of a platform
hidden by abstraction

What counts as a platform depends on the kind of system being
developed.
Example: From the point of view of a developer of middleware for several
operating systems, there will be platform independent and platform specific
models of the middleware. The class of platforms is the operating systems and
each target platform is a particular operating system.
What counts as a platform is relative to the purpose of the modeler. For
many MDA users, middleware is a platform, for a middleware
developer an operating system is the platform. Thus a platform-
independent model of middleware might appear to be a highly
platform-specific model from the point of view of an application
developer

168

Lovelace Computing

Interoperability:
a common platform

CORBA

169

Lovelace Computing

Interoperability:
a bridge

CORBA

170

Lovelace Computing

Interoperability:
another case

CORBA

171

Lovelace Computing

This presentation
and your workshop CD

For a version of this presentation
more complete and up to date
than the one on your CD,
have a look at:

www.joaquin.net/MDA/

172

Lovelace Computing

This presentation
and your workshop CD

The version used in the workshop
is there at the time of the workshop

By two weeks after the workshop
I hope to have another version,
based on your feedback here today.

www.joaquin.net/MDA/

173

Lovelace Computing

Model Driven Architecture

MDA
Joaquin Miller

Lovelace Computing
representing X-Change Technologies

This is a presentation prepared for the OMG Fourth Workshop On UML™
for Enterprise Applications: Delivering the Promise of MDA

Joaquin Miller

Lovelace Computing Company
www.joaquin.net

Lovelace is a trademark of Lovelace Computing Company

Presentation Copyright © 2003 Lovelace Computing Company

