
1

Lovelace Computing

Model Driven Architecture

The several styles of

Joaquin Miller
Lovelace® Computing

representing X-Change Technologies

This presentation discusses the several different styles of Model Driven
Architecture.

These slides also appear in the workshop tutorial: Model Driven Architecture.

The material for this presentation is based on the current MDA Guide,
omg/2003-06-01. http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

These notes include text from the MDA Guide: Copyright © 2003 OMG.

These notes include text from the Reference Model of Open Distributed
Processing, X.900 and IS 10746: Copyright © 1995, 1996 ISO and ITU

http://www.joaquin.net/ODP/

Lovelace is a registered trademark of Lovelace Computing Company

Presentation Copyright © 2003 Lovelace Computing Company

2

Lovelace Computing

Acknowledgements

The material in this presentation
is largely from the OMG MDA Guide.

The Guide was prepared by the ORMSC,
under the supervision of the AB.

Many folk contributed to the Guide.
I’m to blame for what is presented here

that is not in the Guide
(and for what is in the Guide).

Mariano Belaunde (France Telecom R&D) Carol Burt (2AB)
Cory Casanave (Data Access Technologies) Fred Cummins (EDS)
Desmond DSouza (Kinetium) Keith Duddy (DSTC)
William El Kaim (BusinessOne/Thales) Alan Kennedy (Kennedy Carter)
William Frank (X-Change Technologies) David Frankel (David Frankel Consulting)
Randall Hauch (Metamatrix) Stan Hendryx (Hendryx & Associates)
Matthew Hettinger (Mathet Consulting) Richard Hubert (Interactive Objects Software)
Duane Hybertson (MITRE) Sridhar Iyengar (IBM)
Jean Jourdan (THALES) Thomas Koch (Interactive Objects Software)
Toshiaki Kurokawa (CSK Corp.) Anthony Mallia (CIBER)
Stephen Mellor (Project Technology) Joaquin Miller (Lovelace Computing)
Jeff Mischkinsky (Oracle) Jishnu Mukerji (HP)
Chalon Mullins (Charles Schwab) Makoto Oya (Hitachi)
Laurent Rioux (THALES) Peter Rivett (Adaptive)
Ed Seidewitz (Intelidata Technologies Corporation) Bran Selic (Rational Software)
Jon Siegel (OMG) Oliver Sims (Sims Associates/IONA)
Dave Smith (Deere & Company) Richard Soley (OMG)
Akira Tanaka (Hitachi) Sandy Tyndale-Biscoe (OpenIT)
Axel Uhl (Interactive Objects Software) Andrew Watson (OMG)
Dirk Weiseand (Interactive Objects Software) Bryan Wood (OpenIT)

3

Lovelace Computing

Mapping

— provides specifications for
transformation of a PIM into a PSM
for a particular platform.

An MDA mapping provides specifications for transformation of a PIM
into a PSM for a particular platform. The platform model will
determine the nature of the mapping.
Examples
A platform model for EJB includes the Home and RemoteInterface as well as
Bean classes and Container Managed Persistence.

Two examples, illustrating different approaches:
Example 1: An EDOC ECA PIM contains attributes which indicate whether
an Entity in that model is managed or not, and whether it is remote or not. A
mapping from ECA to EJB will state that every managed ECA entity will
result in a Home class, and that every remoteable ECA entity will result in a
RemoteInterface. Marks associated with the mapping (with required
parameter values) are supplied by an architect during the mapping process to
indicate the style of EJB persistent storage to be used for each ECA entity, as
no information about this concept is stored in the PIM.
Example 2: A UML PIM to EJB mapping provides marks to be used to guide
the PIM to PSM transformation. It also includes templates or patterns for
code generation and for configuration of a server. Marking a UML class with
the Session mark results in the transformation of that class according to the
mapping into a session bean and other supporting classes.

4

Lovelace Computing

Model type
mapping

A mapping from any model built
using types specified in the PIM language
to models expressed
using types from a PSM language.

A model type mapping specifies a mapping from any model built using
types specified in the PIM language to models expressed using types
from a PSM language.
A PIM is prepared using a platform independent model of types. The
architect chooses types specified by that model to build the PIM,
according to the requirements of the application. One or more model
mappings each specify a mapping from elements of the platform
independent types to platform specific types. These mappings may also
specify mapping rules in terms of the instance values to be found in
models expressed in the PIM language.
Example: If the attribute sharable of class, Entity, is true for a particular
PIM model instance of type, Entity, then map to an EJB Entity, otherwise map
to a Java Class.
These kinds of rules may also map things according to patterns of type
usages in the PIM.
Example: If pattern exists where an instance of class, Entity, has a manages
association to an instance of class, Document, whose attribute, persistent, is
set, then map that instance to an EJB Entity which manages whatever is
mapped from the instance of Document instance identified by the pattern.

5

Lovelace Computing

Metamodel
mapping

A model type mapping,
where the types specified
using MOF metamodels.

A metamodel mapping is a specific example of a model type mapping, where
the types of model elements in the PIM and the PSM are both specified as
MOF metamodels. In this case the mapping gives rules and/or algorithms
expressed in terms of all instances of types in the metamodel specifying the
PIM language resulting in the generation of instances of types in the
metamodel specifying the PSM language(s).

Notice that we have a different meaning of ‘type’ here. In a model type
mapping the types are in the language of the model; in a metamodel mapping
the types are from a metamodel.

If the previous paragraph seems muddled or hard to follow, or off base, that is
one more symptom of the meta-muddle we find ourselves in.

6

Lovelace Computing

Mapping
with other types

The types used in a mapping
may be expressed in other languages,
including a natural language.

The types available to model the PSM (or even the PIM) may not be
specified as a MOF metamodel. For example, the CORBA IDL language
provides for the expression of types available in CORBA PSMs. In this
case mappings can be expressed as transformations of instances of
types in the PIM, into instances of types in the PSM expressed in other
languages, including natural language.

7

Lovelace Computing

Model instance
mappings

Marks the model elements in the PIM
to be transformed in particular way.

Another approach to mapping models is to identify model elements in
the PIM which should be transformed in particular way, given the
choice of a specific platform for the PSM.
Model instance mappings will use marks. We’ll discuss these shortly.

8

Lovelace Computing

Combined
type and instance mapping

Combines type and instance mapping.

Most mappings, however, will consist of some combination of the
above approaches.
A model type mapping is only capable of expressing transformations in
terms of rules about things of one type in the PIM resulting in the
generation of some thing(s) of some (one or more) type(s) in the PSM.
However, without the ability for the architect to also mark the model
with additional information for use by the transformation, the mapping
will be deterministic, and will rely wholly on Platform Independent
information to generate the PSM. Rules in the mapping will often
specify that certain types in the PIM must be marked with one of a set
of marks in order that the PSM will have the right non-functional or
stylistic characteristics, which cannot be determined from information
in the PIM.
Likewise, every transformation of model instances has implicit type
constraints which the architect marking the model must obey in order
for the transformation to make sense. For example, marking an
Association End in a UML model with the mark, ‘Entity,’ makes no
sense, whereas marking it with the mark, ‘RMI navigable,’ does.
Implicitly each type of model element in the PIM is only suitable for
certain marks, which indicate what type of model element will be
generated in the PSM. Transformations based on marking instances
will either explicitly state which marks are suitable for which types in
the PIM, or these type constraints will be implicitly understood by the
user of the marks.

9

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

10

Lovelace Computing

Mark

— represents a concept in the PSM
— is applied to an element of the PIM

to indicate how that element
is to be transformed

— not a part of the PIM

Many model mappings will define marks. A mark represents a concept
in the PSM, and is applied to an element of the PIM, to indicate how
that element is to be transformed.
The marks, being platform specific, are not a part of the platform
independent model. The architect takes the platform independent
model and marks it for use on a particular platform. The marked PIM
is then used to prepare a platform specific model for that platform.
The marks can be thought of as being applied to a transparent layer placed over
the model.

11

Lovelace Computing

Sources
of marks

— types from a model
— roles; for example, from patterns
— stereotypes from a UML profile
— elements from a MOF model
— model elements

specified by any metamodel

Marks may come from different sources. These include:
— types from a model, specified by classes, associations, or
other model elements
— roles from a model, for example, from patterns
— stereotypes from a UML profile
— elements from a MOF model
— model elements specified by any metamodel
Example: Entity is a mark that can be applied to classes or objects in a PIM;
this mark indicates that the Entity template of the mapping will be used in
transforming that PIM to a PSM.

Marks may also specify quality of service requirements on the
implementation. That is, instead of indicating the target of a
transformation, a mark may instead simply provide a requirement on
the target. The transformation will then choose a target appropriate to
that requirement.

12

Lovelace Computing

Mark model

In practice, a set of marks is not enough

A model of the use of the marks is needed
“a set of concepts and structuring rules”

In order for marks to be properly used, they may need to be structured,
constrained or modeled. For example a set of marks indicating
mutually exclusive alternative mappings for a concept need to be
grouped, so that an architect marking a model knows what the choices
are, and that more than one of these marks cannot be applied to the
same model element.
Some marks, especially those that indicate quality of service
requirements, may need parameters. For example, a mark, ‘Supports
simultaneous connections,’ may require a parameter to indicate an
upper bound on the number of connections that need to be supported,
or even several parameters giving details for timeouts or connection
policy.
A set of marks, instead of being supplied by a mapping, may be
specified by a mark model, which is independent of any particular
mapping. Such a set of marks can be used with different mappings. A
set of marks may also be supplied along with a UML profile; several
different mappings might be supplied with that profile.

13

Lovelace Computing

Template

A parameterized model that specifies a
particular kind of transformation.

Marks:
to indicate which template to apply
to identify parameters for the template

A mapping may also include templates, which are. These templates are like
design patterns, but may include much more specific specifications to guide
the transformation.
Templates can be used in rules for transforming a pattern of model elements
in a model type mapping into another pattern of model elements.
A set of marks can be associated with a template to indicate instances in a
model which should be transformed according to the template. Other marks
can be used to indicate which values in a model fill the parameters in the
template. This allows values in the source model to be copied into the target
model, and modified if necessary.
Example: A CORBA Component mapping might include an Entity template, which
specifies that an object in the platform independent model, which is marked, Entity,
corresponds, in a platform specific model, to two objects, of types HomeInterface and
EntityComponent, with certain connections between those objects.
Example: A CORBA mapping might provide that a client object be prepared for a
range of CORBA non-standard system exceptions or standard user exceptions and
include the necessary exception handling in each case.
Example: A mapping from the EAI metamodel to a COBOL Connector
implementation design might identify a template with an Adapter associated with a
Connector which has certain attributes as a pattern that is directly mapped to a
certain Connector type.

14

Lovelace Computing

Mapping
language

A language to describe
a transformation
of one model to another

“a set of concepts and structuring rules”

A mapping is specified using some language to describe a
transformation of one model to another. The description may be in
natural language, an algorithm in an action language, or in a model
mapping language.
Model mapping languages are an area for MDA technology adoptions.
The current MOF Query/View/Transformation RFP requests
technology submissions suited to the specification of metamodel
mappings.
A desirable quality of a mapping language is portability. This enables
use of a mapping with different tools.

15

Lovelace Computing

Marking
a model

the architect or engineer
marks elements of the PIM
to indicate the mappings to be used
to transform that PIM into a PSM

In model instance mappings the architect marks elements of the PIM to indicate
the mappings to be used to transform that PIM into a PSM.
In one simple case, a PIM element is marked once, indicating that a certain
mapping is to be used to transform that element into one or more elements in
the PSM.
In a more general case, several PIM elements are marked to indicate their roles
in some mapping. This mapping is then used to transform those PIM elements
into some different set of PSM elements, perhaps quite different in appearance.

16

Lovelace Computing

Marking
a model

A model element may have several marks
including marks for several mappings

An element of the PIM may be marked several times, with marks from different
mappings; this indicates that the element plays a role in more than one
mapping. When an element is marked in this way, it will be transformed
according to each of the mappings; the result may be additional features of the
resulting element(s) as well as additional resulting elements in the PSM.
Example: Entity is a mark in one mapping that can be applied to classes or objects in a
PIM; this mark indicates that the Entity template of the mapping will be used in
transforming that PIM to a PSM. Auditable is a mark in another mapping; this mark
indicates that changes to an object will be recorded in a write only file. When both
mappings are applied, an object marked with entity and auditable is transformed
according to the Entity template of the first mapping and with a capability to detect and
record changes.

17

Lovelace Computing

Marking
a model

A tool may ask for mapping decisions
during a transformation

This is a kind of marking

In model type transformations a mapping description, specified in terms of
rules and/or algorithms is applied to a model of the type that the mapping is
designed for. All rules and algorithms which operate on type information
automatically generate a target model, but the transformation tool asks a user
for mapping decisions in the course of transformation where a rule specifies
that information not available in the source model is required, and records
those decisions as marking of the PIM.

18

Lovelace Computing

Marking
a model

A tool should keep the markings
for use again;

but keep them separate from the model.

Model markings can be stored and subsequent transformations may use these
marking, asking only for additional decisions required by additions or changes
to the model.

19

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

20

Lovelace Computing

Transformation

— the process of converting one model to
another model of the same system

— input is the PIM and the mapping
— result is the PSM

and a record of the transformation

The next step is to take the marked PIM and transform it into a PSM.
This can be done manually, with computer assistance, or automatically.
Model transformation is the process of converting one model to another
model of the same system. The input to the transformation is the
marked PIM and the mapping. The result is the PSM and the record of
transformation.
Using model type mapping, transformation takes any PIM specified
using one model and, following the mapping, produces a PSM
specified using another model.
Using model instance mapping, transformation takes a marked PIM
and, following the mappings, as indicated by the marks, produce a
PSM.
Example:
A platform independent model of a securities trading system (a PIM) is
transformed for the CORBA component platform. The result of the
transformation is a model of that system specific to the CORBA component
platform (a PSM) and a record of transformation showing the correspondences
between the two models.

21

Lovelace Computing

Direct to code

— transform a PIM directly to code,
without producing a PSM

— or also produce a PSM,
for use in understanding
or debugging that code

In some cases, a tool will transform a PIM directly to deployable code,
without producing a PSM. Such a tool might also produce a PSM, for
use in understanding or debugging that code.

22

Lovelace Computing

MDA Pattern

PIM

PSM

Transformation

The drawing illustrates the MDA pattern, by which a PIM is
transformed to a PSM.
The drawing is intended to be suggestive. The platform independent
model and other information are combined by the transformation to
produce a platform specific model.
The drawing is also intended to be generic. There are many ways in
which such a transformation may be done. However it is done, it
produces, from a platform independent model, a model specific to a
particular platform.
The box with no name represents what goes into the transformation, in
addition to the platform independent model. This varies with different
styles of MDA.

23

Lovelace Computing

Generalized
MDA Pattern

PIM

PSM

Transformation

a model

another

This drawing is more generic. There are many kinds of model
transformations. Many of the same tools that will transform a PIM to a
PSM can be used for other kinds of transformation of one kind of model
to another.

24

Lovelace Computing

Platform
Independent

Model

Platform
Specific
Model

Transformation

Platform

Platform
Information

Information about the chosen platform is required to transform a PIM to a
PSM. This information is sometimes imbedded in the transformation tool.
Other tools accept information about the platform as input to the
transformation process.

25

Lovelace Computing

PIM

PSM

Additional
Information

Additional Information

The drawing extends the simple MDA pattern to show the use of
additional information.
In addition to the PIM and the platform information, additional
information can be supplied to guide the transformation.
Examples: A particular architectural style may be specified. Information may
be added to connectors to specify quality of service. Selections of particular
implementations may be made, where more than one is provided by the
transformation. Data access patterns may be specified.

Often the additional information will draw on the practical knowledge of the
designer. This will be both knowledge of the application domain and
knowledge of the platform.

26

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Pattern application
Model merging

27

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Pattern application
Model merging

28

Lovelace Computing

PIM

Platform

Marks

Mapping

PSM

marked
PIM

Transformation

Marks

The drawing expands the MDA pattern to show more detail of one of
the ways that a transformation may be done.
The drawing is intended to be suggestive. A particular platform is
chosen. A mapping for this platform is available or is prepared. This
mapping includes a set of marks. The marks are used to mark elements
of the model to guide the transformation of the model. The marked
PIM is further transformed, using the mapping, to produce the PSM.

29

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Pattern application
Model merging

30

Lovelace Computing

PIM

Transformation

Platform
Specific

Metamodel

Platform
Independent
Metamodel

Transformation
Specification

source language

target language

language used

language used
PSM

Metamodel
transformation

The drawing expands the MDA pattern in a different way, to show
more detail of another of the ways that a transformation may be done.
The drawing is intended to be suggestive. A model is prepared using
a platform independent language specified by a metamodel. A
particular platform is chosen. A specification of a transformation for
this platform is available or is prepared. This transformation
specification is in terms of a mapping between metamodels. The
mapping guides the transformation of the PIM to produce the PSM.
Example: The platform independent metamodel is the EDOC ECA Business
Process Model, and the platform specific metamodel is a MOF model of a
workflow engine. The transformation specification is a MOF QVT
transformation model. The transformation is carried out by a transformation
engine created by a tool, which uses a pair of MOF models to build an engine
for a specific transformation.

31

Lovelace Computing

Metamodel
transformation

Notice that this is about specifying
a transformation
in terms of metamodels.

Not about transforming metamodels.

Notice that Metamodel transformation is about specifying a transformation in
terms of metamodels.

It is not about transforming metamodels. Of course, metamodels are models.
So one metamodel can be transformed into another, using the same general
model transformation techniques as are used with any other models.

32

Lovelace Computing

Metamodel
transformation

33

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Pattern application
Model merging

34

Lovelace Computing

PIM

Transformation

Platform
Specific
Types

Platform
Independent

Types

Transformation
Specification

source types and patterns

target types and patterns

subtypes of

subtypes of
PSM

Model
transformation

The drawing shows yet another of the ways that a transformation may
be done.
The drawing is intended to be suggestive. A model is prepared using
platform independent types specified in a model. The types may be
part of a software framework. The elements in the PIM are subtypes of
the platform independent types. A particular platform is chosen. A
specification of a transformation for this platform is available or is
prepared. This transformation specification is in terms of a mapping
between the platform independent types and the platform dependent
types. The elements in the PSM are subtypes of the platform specific
types.
Example: The platform independent types declare generic capabilities and
features. The platform specific types are mix-in classes and composite classes
that provide the capabilities and features specific to a particular type of
platform.
This approach differs from metamodel mapping primarily in that types
specified in a model are used for the mapping, instead of concepts
specified by a metamodel.

35

Lovelace Computing

Model
transformation

PIM

Transformation

Platform
Specific
Types

Platform
Independent

Types

Transformation
Specification

source types and patterns

target types and patterns

subtypes &
individuals of

subtypes &
individuals ofPSM

Here again, we will often need to use specific individuals, in addition to types.
So the text on the horizontal arrows needs to be changed to read ’subtypes and
individuals of.’

36

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Pattern application
Model merging

37

Lovelace Computing

Pattern
application

PIM

Transformation

Platform
Specific

Types & Patterns

Platform
Independent

Types & Patterns

Transformation
Specification

source types

target types

subtypes &
individuals of

subtypes &
individuals ofPSM

Extension of the model and metamodel mapping approaches include patterns
along with the types or the modeling language concepts.

In addition to platform independent types, a generic model can supply patterns.
Both the types and patterns can be mapped to platform specific types and
patterns.
Example: A platform independent model uses a generic model defining object
types corresponding to the concepts of the RM-ODP Engineering Language,
and patterns for their use, corresponding to the structuring rules of the
Engineering Language. The transformation specification maps these types to
object types to be used in a CORBA implementation, and these patterns to
corresponding patterns in the Common ORB Architecture. ODP stubs
become CORBA stubs and skeletons; the functions of ODP binders are mapped
to ORB and object adapter functions; ODP interceptors become CORBA
interceptors…
The metamodel mapping approach can use patterns in the same way.

38

Lovelace Computing

PIM

Platform

Pattern
Names

Patterns

PSM

marked
PIM

Transformation

Pattern names
as marks

The drawing shows another way to use patterns: as the names of platform
specific marks, that is, the names of design patterns that are specific to a
platform.

39

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Pattern application
Model merging

40

Lovelace Computing

PIM

PSM

Another
Model

Model
Merge

Model Merge

The drawing expands the MDA pattern in a different way to show
more detail of another one of the ways that a transformation may be
done.
Again, the drawing is intended to be suggestive. It is also generic. There are
several MDA approaches that are based on merging models.

An earlier example shows the use of patterns and pattern application. At least
some cases of pattern application can be regarded as one kind of model
merging.

The 2U submission for UML 2 proposed model merging as a technique for
language specification. Much of the proposed technique has been incorporated
in the adopted UML 2.

41

Lovelace Computing

Transformation
approaches

Marking
Metamodel transformation
Model transformation
Pattern application
Model merging

42

Lovelace Computing

PIM

PSM

Additional
Information

Additional Information

The drawing extends the simple MDA pattern to show the use of
additional information.
In addition to the PIM and the platform specific marks, additional
information can be supplied to guide the transformation.
Examples: A particular architectural style may be specified. Information may
be added to connectors to specify quality of service. Selections of particular
implementations may be made, where more than one is provided by the
transformation. Data access patterns may be specified.

Often the additional information will draw on the practical knowledge
of the designer. This will be both knowledge of the application domain
and knowledge of the platform.

43

Lovelace Computing

PIM

Platform

Pattern
Names

Patterns

PSM

marked
PIM

Transformation

Additional
Information

Additional
Information

Patterns &
additional information

The drawing further expands the MDA pattern to show the use of
additional information in a particular transformation technique.
The drawing is intended to be suggestive. In the process of preparing
a PIM, in addition to using the pattern names provided, other
information can be added to produce the marked PIM. More
information, in addition to the patterns, can be used when the marked
PIM is further transformed to produce the PSM.

44

Lovelace Computing

MDA
transformations

Model transformations are carried out
in many ways.

There is a range of tool support for model transformation.
Transformations can use different mixtures of manual and automatic
transformation. There are different approaches to putting into a model
the information necessary for a transformation from PIM to PSM. Four
different transformation approaches described here illustrate the range
of possibilities: manual transformation, transforming a PIM that is
prepared using a profile, transformation using patterns and markings,
and automatic transformation.

45

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

46

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

In order to make the transformation from PIM to PSM, design decisions
must be made. These design decisions can be made during the process
of developing a design that conforms to engineering requirements on
the implementation. This is a useful approach, because these decisions
are considered and taken in the context of a specific implementation
design.
This manual transformation process is not greatly different from how
much good software design work has been done for years. The MDA
approach adds value in two ways:
— the explicit distinction between a platform independent model and
the transformed platform specific model,
— the record of the transformation.

47

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

A PIM may be prepared using a platform independent UML profile. This
model may be transformed into a PSM expressed using a second, platform
specific UML profile.

The transformation may involve marking the PIM using marks provided with
the platform specific profile.

A PIM may be prepared using a platform independent UML profile. This
model may be transformed into a PSM expressed using a second, platform
specific UML profile.

The transformation may involve marking the PIM using marks
provided with the platform specific profile.

It can be argued that this distinction is spurious: What is the difference
between using a profile as a language for a PIM and/or a PSM, and using
plain old UML, or a metamodel? As we know there are some models
expressible as either a UML profile, or in some other language (e.g. CORBA –
UML Profile, IDL, or CCM metamodel, ECA – UML Profile or metamodel).
This does not dictate the way in which transformations can be achieved. In fact
UML Profiles are quite amenable to metamodel transformation, as UML has a
valid MOF metamodel – in UML 2.0 this will be even more direct.

48

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

Patterns may be used in the specification of a mapping. The mapping
includes a pattern and marks corresponding to some elements of that
pattern.
In model instance transformations the specified marks are then used to
prepare a marked PIM. The marked elements of the PIM are
transformed according to the pattern to produce the PSM.
Example: A decorator pattern with two roles, decoration and decorated
supplied a mark, decorated. When this mark is applied to a class in a model,
the transformation might produce a class corresponding to that class, with
additional operations and attribute, a new class, corresponding to the
decoration, and an association between those classes.

49

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

Several patterns may be combined to produce a new pattern. New
marks can then be specified for use with the new pattern.
In model type transformations rules will specify that all elements in the
PIM which match a particular pattern will be transformed into
instances of another pattern in the PSM. The marks will be used to bind
values in the matched part of the PIM to the appropriate slots in the
generated PSM. In this usage the target patterns can be thought of as
templates for generating the PSM, and the use of marks as a way of
binding the template parameters.
Example: A mapping from EDOC ECA to EJB might include a pattern of
ECA types identifying appropriate ProcessComponents and their associated
document types as suitable for mapping to EJB Entities and their Remote
Interfaces and container managed data classes. Marks in the source pattern
will correspond to marks in the target pattern. For example a mark, ‘Name,’
might be used to identify the attribute, ‘name,’ of each matched
ProcessComponent and make it the classname of the Entity’s Remote Interface.

50

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

There are contexts in which a PIM can provide all the information
needed for implementation, and there is no need to add marks or use
data from additional profiles, in order to be able to generate code. One
such is that of mature component-based development, where
middleware provides a full set of services, and where the necessary
architectural decisions are made once for a number of projects, all
building similar systems (for example, there is a component based
product line architecture in place). These decisions are implemented in
tools, development processes, templates, program libraries, and code
generators.
In such a context, it is possible for an application developer to build a
PIM that is complete as to classification, structure, invariants, and pre-
and post-conditions. The developer can then specify the required
behavior directly in the model, using an action language. This makes
the PIM computationally complete; that is, the PIM contains all the
information necessary to produce computer program code.
In this context, the developer need never see a PSM, nor is it necessary
to add additional information to the PIM, other than that already
available to the transformation tool. The tool interprets the model
directly or transforms the model directly to program code.

51

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

Such a PIM, in a mature component development shop, with an established
architectural style and with platform specific engineering decisions already
made and being reused, can be used to generate code (i.e. components in their
code form) not only to different CORBA Components or J2EE platforms, but
also to some of the other application server platforms.
This assumes that someone has prepared for re-use:
(a) a model of the architectural style
(b) detail within that model, such as a PIM type system, that can be
automatically mapped to the various target platforms
(c) the necessary tool support to deliver the model to the developers in the
form of profiles, model conformance checks, links to an IDE, supporting
processes, and so forth
(d) a mapping for each target platform.
The point is that, with such development environment support, for a given
application, the application developer need develop only a PIM, and code can
be directly generated from that PIM.
The information that would otherwise be in a visible PSM is effectively pre-
packaged, and provided to the application developer within the development
environment.
As mentioned, there may be an advantage to providing the developer a model
of the generated code.

52

Lovelace Computing

MDA
transformations

Manual
Using a profile
Using patterns and markings
Automatic

53

Lovelace Computing

Input to
transformations

Patterns
Technical choices
Quality needs

54

Lovelace Computing

Input to
transformations

Patterns
Technical choices
Quality needs

Generic transformation techniques can work with patterns supplied by
the architect or builder. Different patterns, chosen by the architect, or
by a transformation tool using supplied selection criteria.
Patterns are also important in the description of groups of concepts in
one model that correspond to a concept, or different group of concepts
in another model when specifying a type-based transformation. Tools
will then be responsible for matching the patterns in the source model
and using the patterns in the target model as templates for creating the
new model.

55

Lovelace Computing

Input to
transformations

Patterns
Technical choices
Quality needs

Technical choices of all kinds can be made by the architect or builder and used
to guide the transformation. Technical choices might also be made by analysis
tools working with the PIM, and then used in manual or automatic
transformation. Most approaches will use some combination of some
automated transformation with architect-chosen manual input to the
transformation.

56

Lovelace Computing

Input to
transformations

Patterns
Technical choices
Quality needs

A whole range of quality of service requirements can be used to guide
transformations. In a transformation to a PIM, specific transformation choices
will be made according to the particular qualities required at each
conformance point in the model.

57

Lovelace Computing

Input to
transformations

Patterns
Technical choices
Quality needs

58

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

So far, we have focused on a straightforward PIM to PSM transformation.
Now, let’s discuss several other uses of Model-Driven Architecture.

59

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

Many systems are built on more than one platform. An MDA
transformation can use marks from several different platform models to
transform a PIM into a PSM with parts of the system on several
different platforms.
Example: A trading system PIM is transformed to a web services front end
and a mainframe back office system.
Example: A system needs to communicate with several existing systems.
Several means of communication are available, IIOP, RMI, and SOAP. The
architect chooses the means most suitable for each connector and marks that
connector with a mark from the set for that means.

60

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

A PIM can specify a system, with several parts, each under separate
control. The transformation of that PIM to a PSM can be made
recognizing that the system is federated. That PIM can also be
transformed into different PSMs for use by different parts of the
system.
Example: Several trading partners want to share a common software design
and produce interoperable implementations, each partner using a different
platform.
This approach will require the identification of generic bridges between the
platforms, or the generation of bridges specialized for the system. The use of
platform independent models for specifying the whole system will provide
generation tools with some, or most of the information needed to perform
specific bridging, as long as a generic interoperability mechanism is available.
No current standard solutions exist in this space. This is a topic for future
standards in OMG.

61

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

The MDA pattern includes a PIM, a platform, and a PSM. The PSM is
specific to that platform. The PIM is platform independent because it is
not dependent on any particular platform of that class. What counts as
a PIM depends on the class of platform that the MDA user has in mind.
Example: An OMG domain task force may be conducting an RFP process for a
domain specific technology. It requests a PIM and a PSM for a generic
component technology platform. At the same time, an OMG platform task
force may be conducting an RFP process for an improved component model,
backward compatible with the CORBA Component Model, CCM. This task
force requests a PIM for a component technology and one or more PSMs for
that technology. What is a PSM to the first task force is a PIM to the second.

62

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

The MDA pattern can be applied several times in succession. What is a
PSM resulting from one application of the pattern, will be a PIM in the
next application.
Example: In case of CORBA the platform is specified by a set of interfaces
and usage patterns that constitute the CORBA Core Specification [CORBA].
The CORBA platform is independent of operating systems and programming
languages. The OMG Trading Object Service specification [TOS] (consisting
of interface specifications in OMG Interface Definition Language (OMG IDL))
can be considered to be a PIM from the viewpoint of CORBA, because it is
independent of operating systems and programming languages. When the IDL
to C++ Language Mapping specification is applied to the Trading Service
PIM, the C++-specific result can be considered to be a PSM for the Trading
Service, where the platform is the C++ language. Thus the IDL to C++
Language Mapping specification [IDLC++] determines the mapping from the
Trading Service PIM to the Trading Service PSM.

63

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

The same approaches that enable transformation of a PIM to a PSM can be
used to transform any model into another, related model.

64

Lovelace Computing

General
transformations

Metamodel B

Model 1

Transformation

Metamodel A

Transformation
Model

source language

target language

language used

language used
Model 2

The drawing illustrates the general case of a metamodel mapping
transformation. Model 1 and Model 2 may be any models, and the
transformation need not have anything to do with platforms.
Examples: A generic model of financial transactions is transformed to one
specific to a particular kind of transaction. A generic model of financial
transactions is transformed to one specific to the trade practices of a particular
exchange. An internationalized model of an application is transformed to one
specific to the customs of a particular region.
The drawing and example use metamodel mapping to illustrate the point. Any
of the MDA approaches discussed in this Guide can be used for general
model-to-model transformations.

65

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

Mappings may be reused in several ways. These include extension,
combination, and bridging.

66

Lovelace Computing

Reuse:
Extension

Extension uses a base mapping
to create a derived mapping
by incremental modification

Extension uses a base mapping to create a derived mapping by
incremental modification. The incremental modifications may add to
or alter the properties of the base mapping to obtain the derived
mapping.
Mappings can be arranged in an inheritance hierarchy according to
derived base mapping relationships. This is the interpretation of
mapping inheritance in the MDA. If mappings can have several base
mappings, inheritance is said to be multiple. If the criteria prohibit
suppression of properties from the base mappings, inheritance is said
to be strict.
Example: Given a mapping from UML class diagrams to generic CORBA
models, the mapping can be extended to make a mapping for a specific vendor
of a CORBA system.

67

Lovelace Computing

Reuse:
Combination

Combination uses
two or more mappings
to create a new mapping.

Combination uses two or more mappings to create a new mapping.
The characteristics of the new mapping are determined by the
mappings being combined and by the way they are combined. The
effect of the application of a combined mapping is the corresponding
combination of the effects of the original mappings.
Ways in which mappings may be combined include sequential
combination and concurrent combination. The concept of a
combination of mappings will always be used in a particular sense,
identifying a particular means of combination.
Examples:
Given a mapping from platform independent models to component style
models and a mapping from component style models to EJB code. A sequential
combination applies the mappings successively to produce a mapping from
PIM to EJB code. If instead, the second mapping is for transforming
component style models to CORBA Component Model code, the sequential
combination is for transforming PIMs to CCM code.
Given a mapping from PIMs to CCM specific models, which includes a mark
for container managed persistence and a mark for component managed
persistence and another mapping from PIMs to high performance and high
availability indexed sequential file access. A concurrent combination applies
both of the mappings concurrently to produce a PSM in which some objects
use CCM persistence services and others use the file access platform.

68

Lovelace Computing

Reuse:
Bridging

Bridging uses mappings for two platforms
to enable interoperability.

An interoperability mapping uses mappings for two different
platforms. These are combined to create a mapping to transform a PIM
into a PSM in which some objects are on one platform and others on the
second. This mapping is then extended further to include connectors
that bridge between the two platforms and specifications for the use of
these connectors in a transformation. The resulting mapping is used to
transform a PIM into a PSM of a system that makes use of both
platforms and provides for the interoperability of the subsystems on
the different platforms.

69

Lovelace Computing

Other MDA
capabilities

Multi-platform models
Federated systems
Multiple transformations
General transformations
Reuse of mappings

70

Lovelace Computing

Other MDA
capabilities

Document generation

Data transformation

Test generation

…

71

Lovelace Computing

This presentation
and your workshop CD

For a version of this presentation
more complete and up to date
than the one on your CD,
have a look at:

www.joaquin.net/MDA/

72

Lovelace Computing

This presentation
and your workshop CD

The version used in the workshop
is there at the time of the workshop

By two weeks after the workshop
I hope to have another version,
based on your feedback here today.

www.joaquin.net/MDA/

73

Lovelace Computing

Model Driven Architecture

MDA
Joaquin Miller

Lovelace® Computing
representing X-Change Technologies

This is a presentation prepared for the OMG Fourth Workshop On UML™
for Enterprise Applications: Delivering the Promise of MDA

Joaquin Miller

Lovelace Computing Company
2908 Morgan Ave
Oakland CA 94602-3471
USA

+1 (510) 336-2545
Fax: 336-2546

Joaquin.no.spam that-sign acm the-dot org

www.joaquin.net

Lovelace is a registered trademark of Lovelace Computing Company

Presentation Copyright © 2003 Lovelace Computing Company

