
1

Lovelace Computing

What's a Platform?

An Overview of
Model Driven Architecture

Joaquin Miller
Lovelace® Computing

representing X-Change Technologies

This presentation discusses the concepts of Model Driven Architecture.

An important contribution of the presentation is to elucidate the intended
meanings of the central terms, ‘platform’ and ‘independence,’ as they are used
in the OMG documents.

It will benefit the workshop to establish for the workshop participants a
common understanding of MDA concepts and a shared usage of termi nology.
This presentation is designed to help accomplish that.

These slides also appear in the workshop tutorial: Model Driven Architecture.
The material for this presentation is based on the current MDA Guide, omg/2003-06-01.
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

These notes include text from the MDA Guide: Copyright © 2003 OMG and from the
Reference Model of Open Distributed Processing, X.900 and IS 10746: Copyright © 1995,
1996 ISO and ITU

http://www.joaquin.net/ODP/

Joaquin Miller joaquin.no.spam that-sign acm the-dot org
Lovelace Computing Company
Lovelace is a registered trademark of Lovelace Computing Company

Presentation Copyright © 2003 Lovelace Computing Company

2

Lovelace Computing

Independent of What?

An Overview of
Model Driven Architecture

Joaquin Miller
Lovelace® Computing

representing X-Change Technologies

I like this title. I proposed it to the program committee. It suits my style. But
then, the intended meaning might not be clear to all.

3

Lovelace Computing

What's a Platform?

An Overview of
Model Driven Architecture

Joaquin Miller
Lovelace® Computing

representing X-Change Technologies

4

Lovelace Computing

Acknowledgements

The material in this presentation
is largely from the OMG MDA Guide.

The Guide was prepared by the ORMSC,
under the supervision of the AB.

Many folk contributed to the Guide.
I’m to blame for what is presented here

that is not in the Guide
(and for what is in the Guide).

Mariano Belaunde (France Telecom R&D) Carol Burt (2AB)
Cory Casanave (Data Access Technologies) Fred Cummins (EDS)
Desmond DSouza (Kinetium) Keith Duddy (DSTC)
William El Kaim (BusinessOne/Thales) Alan Kennedy (Kennedy Carter)
William Frank (X-Change Technologies) David Frankel (David Frankel Consulting)
Randall Hauch (Metamatrix) Stan Hendryx (Hendryx & Associates)
Matthew Hettinger (Mathet Consulting) Richard Hubert (Interactive Objects Software)
Duane Hybertson (MITRE) Sridhar Iyengar (IBM)
Jean Jourdan (THALES) Thomas Koch (Interactive Objects Software)
Toshiaki Kurokawa (CSK Corp.) Anthony Mallia (CIBER)
Stephen Mellor (Project Technology) Joaquin Miller (Lovelace Computing)
Jeff Mischkinsky (Oracle) Jishnu Mukerji (HP)
Chalon Mullins (Charles Schwab) Makoto Oya (Hitachi)
Laurent Rioux (THALES) Peter Rivett (Adaptive)
Ed Seidewitz (Intelidata Technologies Corporation) Bran Selic (Rational Software)
Jon Siegel (OMG) Oliver Sims (Sims Associates/IONA)
Dave Smith (Deere & Company) Richard Soley (OMG)
Akira Tanaka (Hitachi) Sandy Tyndale-Biscoe (OpenIT)
Axel Uhl (Interactive Objects Software) Andrew Watson (OMG)
Dirk Weiseand (Interactive Objects Software) Bryan Wood (OpenIT)

5

Lovelace Computing

OMG
Architectures

OMA

CORBA

MDA

Over the last dozen years, the Object Management Group, better known as
OMG, standardized the object request broker (ORB) and a suite of object
services. This work was guided by the Object Management Architecture
(OMA), which provides a framework for distributed systems and by the
Common ORB Architecture, or CORBA, a part of that framework.
The OMA and CORBA were specified as a software framework, to guide the
development of technologies for OMG adoption. This framework is in the
same spirit as the OSI Reference Model and the Reference Model of Open
Distributed Processing (RM-ODP or ODP). The OMA framework identifies
types of parts that are combined to make up a distributed systemand, together
with CORBA, specifies types of connectors and the rules for their use.

Six years ago Mary Loomis led the OMG members in further enlarging
their vision to include object modeling. This resulted in the adoption of
the Unified Modeling Language, UML. OMG members then began to
use UML in the specification of technologies for OMG adoption.
In keeping with its expanding focus, last year OMG adopted a second
framework, the Model-Driven Architecture or MDA [6].
Development of technologies for this framework is ongoing.

6

Lovelace Computing

MDA

Unlike OMA, is not a framework for
implementing distributed systems

Instead, it is an approach to
using models in software development

MDA is not, like the OMA and CORBA, a framework for implementing
distributed systems. It is an approach to using models in software
development.
MDA is another small step on the long road to turning our craft into an
engineering discipline.

7

Lovelace Computing

Goals

— portability
— interoperability
— reusability

— increased quality

— reduced cost

Three primary goals of MDA are
— portability,
— interoperability and
— reusability
Two other goals are

— increased quality

— reduced cost

Despite the wrong
thinking of many panic
stricken project managers,
these two goals go hand in
hand. Increased quality

8

Lovelace Computing

Separation
of concerns

— specifying a system independently of
the platform that supports it

— specifying platforms
— choosing a particular platform for the

system
— transforming the specification into one

for a particular platform.

The Model-Driven Architecture starts with the well-known and long
established idea of separating the specification of the operation of a
system from the details of the way that system uses the capabilities of
its platform.
MDA provides an approach and tools for:
— specifying a system independently of the platform that supports it,
— specifying platforms,
— choosing a particular platform for the system, and
— transforming the specification into one for a particular platform.

9

Lovelace Computing

MDA Pattern

PIM

PSM

Transformation

Model transformation is the process of converting one model to another
model of the same system.
The drawing illustrates the MDA pattern, by which a PIM is
transformed to a PSM.
The drawing is intended to be suggestive. The platform independent
model and other information are combined by the transformation to
produce a platform specific model.
The drawing is also intended to be generic. There are many ways in
which such a transformation may be done. However it is done, it
produces, from a platform independent model, a model specific to a
particular platform.
The box with no name represents what goes into the transformation, in
addition to the platform independent model. This varies with different
styles of MDA.

10

Lovelace Computing

Basic Concepts

System and model
Model-driven
Architecture
Viewpoint
Platform
Independence
Transformation

11

Lovelace Computing

System

A system is
anything of interest both:

as a whole and
as comprised of parts.

Existing, planned, or to be modified

We’ll present the MDA ideas in terms of some existing or planned
system. That system may include anything: a program, a single
computer system, some combination of parts of different computer
systems, a federation of computer systems, each under separate control,
people, an enterprise, a federation of enterprises…
System: Something of interest as a whole or as comprised of parts. A
component of a system may itself be a system, in which case it may be
called a subsystem.
[RM-ODP 2-6.5 www.joaquin.net/ODP/Part2/6.html#6.5]

The central focus of MDA is software. Much of the discussion will
focus on software within automatic information processing systems.

12

Lovelace Computing

Environment

The environment of a system is
everything in a model of that system
other than that system.

It is not possible to make a useful model
of an actual system that does not include
an environment.

UML will be used to specify or describe open systems: those that interact with
their environment.

So, in order to understand an existing system, parts of the environment of that
system must be described. And parts of the environment of a system to be
built must be specified, in order to understand what the environment must be
like for the system to work.

In an ODP or CommunityUML model, the environment of a system is
everything in the model, other than that system.

Environment (of an object): the part of the model which is not part of that
object.

[RM-ODP 2-8.2 www.joaquin.net/ODP/Part2/8.html#8.2]

Of course, the system and its environment form another system. When the
distinction does not matter, it is not this larger system we mean in this
presentation, but the system being specified or described.

The following statement is just fine in practice, though not exactly true:

It is not possible to make a useful model of an actual system that does not
include an environment.

The reason that the statement is not exactly true is that the universe is a closed
system, so has no environment.

The universe the only system that is closed at all times. Other than the
universe, every system is open. [19]

13

Lovelace Computing

Application

A system consists of one or more
applications,
supported by one or more platforms

In this presentation we will consider that a system consists of one or more
applications, supported by one or more platforms

‘Application’ is not intended as a technical term, but we will need it later in
the discussion.

14

Lovelace Computing

Model

A model is
a description or specification …

… of something …

… for a purpose.

A model of a system is a description or specification of that system and
its environment for some certain purpose. A model is a model of
something.
A model is often presented as a combination of drawings and text. The
text may be in a modeling language or in a natural language.
The more exact the model, the more likely the system built using the
model will be what is wanted.

15

Lovelace Computing

Model

A model is
a description or specification …

… of something …

… for a purpose.

16

Lovelace Computing

Model

A model is
a description or specification …

… of something …

… for a purpose.

17

Lovelace Computing

Model

A model is
a description or specification …

… of something …

… for a purpose.

18

Lovelace Computing

Model-driven

model-driven because it provides a means
for using models to direct the course of

understanding
design
construction
deployment
operation
maintenance
modification

MDA is an approach to system development, which increases the power of
models in that work. It is model-driven because it provides a means for using
models to direct the course of understanding, design, construction,
deployment, operation, maintenance and modification.

19

Lovelace Computing

Architecture

The architecture of a system is
a specification of the

parts and connectors of the system and
the rules for the interactions of the parts

using the connectors. [5]

The architecture of a system is a specification of the parts and connectors
of the system and the rules for the interactions of the parts using the
connectors. [5]
Architecture (of a system): A set of rules to define the structure of a
system and the interrelationships between its parts.
[RM-ODP 2-6.6 www.joaquin.net/ODP/Part2/6.html#6.6]

The Model-Driven Architecture prescribes certain kinds of models to be used,
how those models may be prepared and the relationships of the different kinds
of models.

The ‘architecture’ in ‘model driven architecture’ extends the central meaning
of architecture.[18] It is about the architecture of a system of models. The
models are connected by transformation relationships, which structure the
models.

[5] Shaw and Garlan, Software Architecture, Prentice Hall ISBN 0-13-182957-
2

[18] Lackoff, Women, Fire, and Dangerous Things, University of Chicago,
ISBN 0-226-46804-6

20

Lovelace Computing

Architecture

The architecture of a system is
a set of rules to define

the structure of a system and the
interrelationships between its parts. [1]

The architecture of a system is a specification of the parts and connectors
of the system and the rules for the interactions of the parts using the
connectors. [5]
Architecture (of a system): A set of rules to define the structure of a
system and the interrelationships between its parts.
[RM-ODP 2-6.6 www.joaquin.net/ODP/Part2/6.html#6.6]

The Model-Driven Architecture prescribes certain kinds of models to be used,
how those models may be prepared and the relationships of the different kinds
of models.

The ‘architecture’ in ‘model driven architecture’ extends the central meaning
of architecture.[18] It is about the architecture of a system of models. The
models are connected by transformation relationships, which structure the
models.

[1] ISO, RM-ODP [X.900]. www.joaquin.net/RM-ODP/

[5] Shaw and Garlan, Software Architecture, Prentice Hall ISBN 0-13-182957-
2

[18] Lackoff, Women, Fire, and Dangerous Things, University of Chicago,
ISBN 0-226-46804-6

21

Lovelace Computing

Viewpoint

A viewpoint on a system is
a technique for abstraction
using a selected set of

architectural concepts and
structuring rules,

in order to focus on
particular concerns within that system.

A viewpoint on a system is a technique for abstraction using a selected
set of architectural concepts and structuring rules, in order to focus on
particular concerns within that system. [Here ‘abstraction’ is used to
mean the process of suppressing selected detail to establish a simplified
model.]
The concepts and rules may be considered to form a viewpoint language.

Examples:
The Reference Model of Open Distributed Processing (ODP) provides five
viewpoints for specifying a distributed system. [1]
Another classification specifies three (very similar to the SPARC database
model viewpoints [2]): a conceptual viewpoint, describing the place of a system
in the situation in which that system will be (or is already) placed, a
specification (logical) viewpoint, specifying what that system must know and
do, and an implementation (physical) viewpoint, specifying in detail the
construction of that system. [3]

[1] ISO, RM-ODP [X.900]. www.joaquin.net/RM-ODP/

[2] ANSI/X3/SPARC, DBMS Framework Report, Information Systems, 3,
1978.

[3] Daniels, Modeling with a Sense of Purpose, IEEE Software, 19:1, January
2002.

22

Lovelace Computing

Abstraction

‘Abstraction’ is used to mean
the process of
suppressing selected detail
to establish a simplified model

or the result of that process.

I’ll define how I am using ‘abstraction,’ just so we can be more exact.

Abstraction: The process of suppressing irrelevant detail to establish a
simplified model, or the result of that process.

[RM-ODP 2-6.3 www.joaquin.net/ODP/Part2/6.html#6.3]

23

Lovelace Computing

MDA
Viewpoints

The Model-Driven Architecture specifies
three viewpoints on a system:

a computation independent viewpoint
a platform independent viewpoint
a platform specific viewpoint.

We’ll discuss these viewpoints in what follows.

24

Lovelace Computing

Viewpoint
language

The concepts and rules of a viewpoint
may be considered to form
a viewpoint language.

<Viewpoint> language: Definitions of concepts and rules for the specification
of an ODP system from the <viewpoint> viewpoint; thus: engineering
language: definitions of concepts and rules for the specification of an ODP
system from the engineering viewpoint.

[RM-ODP Part3-4.2.1.1 www.joaquin.net/ODP/Part3/4.html#4.2.1.1]

A modeling language intended for specifying a platform specific model for a
certain type of platform can be called a platform specific language.

25

Lovelace Computing

View

A viewpoint model or view of a system is
a representation of that system

from the perspective of a chosen viewpoint.

A viewpoint model or view of a system is a representation of that system from
the perspective of a chosen viewpoint. The distinction between viewpoint and
viewpoint model is important. ‘View’ is a convenient term for viewpoint
model. [4]

[4] IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems IEEE Standard 1471-2000.

26

Lovelace Computing

Platform

Generic platform types

Object
Batch
Dataflow

The Object and Reference Model Subcommittee of the OMG Architecture
Board (ORMSC) was careful and deliberate in not defining platform in its
draft of the OMG MDA Guide. Here are some examples of kinds of
platforms:

Generic platform types

Object: A platform that supports the familiar architectural style of objects
with interfaces, individual requests for services, performance of services in
response to those requests, and replies to the requests. [5]

Batch: A platform that supports a series of independent programs that each
run to completion before the next starts.

Dataflow: A platform that supports a continuous flow of data between
software parts.

[5] Shaw and Garlan, Software Architecture, Prentice Hall ISBN 0-13-182957-
2

27

Lovelace Computing

Platform

Technology specific platform types

CORBA
CORBA Components
Java 2 Components

Technology specific platform types

CORBA: An object platform that enables the remote invocation and event
architectural styles.

CORBA Components: An object platform that enables a components and
containers architectural style. Java 2 Components: Another platform that
enables a components and containers style.

Java 2 Components: Another platform that enables a components and
containers style.

28

Lovelace Computing

Platform

Vendor specific platform types

Borland VisiBroker, Iona Orbix
BEA WebLogic, IBM WebSphere
Microsoft .NET

Vendor specific platform types

CORBA: Iona Orbix, Borland VisiBroker, and many others

Java 2 Components: BEA WebLogic Server, IBM WebSphere software
platform, and many others

Microsoft .NET

29

Lovelace Computing

Application

In this presentation, to focus on software,
a system will be described as
comprising one or more applications,
supported by one or more platforms.

Application is just a term of convenience, to distinguish the software being
specified from the platform that will support that software.

30

Lovelace Computing

Platform
independence

Platform independence is a quality,
which a model may exhibit:

the quality that the model does not
call for
the support of a platform
of a particular type

Platform independence is a quality, which a model may exhibit. This is the
quality that the model is independent of the features of a platform of a
particular type.

Like most qualities, platform independence is a matter of degree. So, one
model might only assume availability of features of a very general type of
platform, such as remote invocation, while another model might assume the
availability a particular set of tools for the CORBA platform. Likewise, one
model might might be dependent on a particular type of platform, but only
because it assume the availability of one feature of a particular type of
platform, while another model might be fully committed to that type of
platform.

31

Lovelace Computing

Questions?

Does anyone have a different take
on the concepts discussed so far?

Can everyone go forward with
no definition of ‘platform’?

32

Lovelace Computing

MDA
Viewpoints

Computation independent viewpoint

Platform independent viewpoint

Platform specific viewpoint

The description of the Model Driven Architecture in the MDA guide is based
on the concept, viewpoint.

Remember that a viewpoint is a form of abstraction achieved using a selected
set of architectural concepts and structuring rules, in order to focus on
particular concerns within a system. So, each of the three MDA viewpoints is
a way to prepare a model of a system. The same system is seen from a
different viewpoint in different viewpoint models of that system.

33

Lovelace Computing

Computation independent
viewpoint

The computation independent viewpoint
focuses on the system
and its environment.
The details of the structure of the system
are hidden or as yet undetermined.

There is some tension in OMG on just what does or should count as a
computation independent viewpoint model. That is, on what the concepts and
structuring rules are, which define the computation independent viewpoint.

The MDA Guide says: A computation independent model is a view of a system
from the computation independent viewpoint. A CIM does not show details of
the structure of systems. A CIM is sometimes called a domain model and a
vocabulary that is familiar to the practitioners of the domain in question is
used in its specification.

It is assumed that the primary user of the CIM, the domain practitioner, is not
knowledgeable about the models or artifacts used to realize the functionality
for which the requirements are articulated in the CIM. The CIM plays an
important role in bridging the gap between those that are experts about the
domain and its requirements on the one hand, and those that are experts of the
design and construction of the artifacts that together satisfy the domain
requirements, on the other.

The MDA technology adoption document says: The computation independent
business model is one in which the Computational (c.f.

RM-ODP computational viewpoint) details are hidden or as yet undetermined.

RM-ODP Computational viewpoint: A viewpoint on an ODP system and its
environment which enables distribution through functional decomposition of
the system into objects which interact at interfaces.

[RM-ODP 3-4.1.1.3 www.joaquin.net/ODP/Part3/4.html#4.1.1.3]

34

Lovelace Computing

Platform independent
viewpoint

The platform independent viewpoint
focuses on the operation of a system
while hiding the details necessary for
a particular platform.

The platform independent viewpoint focuses on the operation of a system
while hiding the details necessary for a particular platform. A platform
independent view shows that part of the complete specification that does not
change from one platform to another.

A platform independent view may use a general purpose modeling language,
or a language specific to the area in which the system will be used.

35

Lovelace Computing

Platform independent
viewpoint

A platform independent view shows
that part of the complete specification
that does not change
from one platform to another.

36

Lovelace Computing

Platform specific
viewpoint

The platform specific viewpoint combines
the platform independent viewpoint with
an additional focus on the detail of
the use of a specific platform by a system.

Notice that this means that whatever is represented in a platform independent
model is also represented in a corresponding platform specific model.

And notice that this is not the same as to write: whatever appears in a platform
independent model also appears in a corresponding platform specific model.

The two models may be quite different, but they represent the same things.
The platform independent model represents those things in a platform
independent way. The platform specific model will usually include more
detailed representations and representations of things not represented in the
platform independent model.

37

Lovelace Computing

MDA
model types

Computation independent model

Platform independent model

Platform specific model

Platform model

38

Lovelace Computing

Platform independent
model (PIM)

A platform independent model is a view
of a system from the
platform independent viewpoint.

A PIM exhibits platform independence
and is suitable for use with
a number of different platforms
of similar type.

39

Lovelace Computing

Platform specific
model (PSM)

A platform specific model is a view of
a system from the
platform specific viewpoint.

A PSM combines
the specifications in the PIM with
the details that specify how that system
uses a particular type of platform.

40

Lovelace Computing

Platform
model

A platform model provides
a set of technical concepts,
representing the different kinds of parts
that make up a platform
and the services provided by that platform.

A platform model provides a set of technical concepts, representing the
different kinds of parts that make up a platform and the services
provided by that platform. It also provides, for use in a platform
specific model, concepts representing the different kinds of elements to
be used in specifying the use of the platform by an application.
Example: The CORBA Component Model provides the concepts,
EntityComponent, SessionComponent, ProcessComponent, Facet, Receptacle,
EventSource, and others. These concepts are used to specify the use of the
CORBA Component platform (CCM) by an application.
A platform model also specifies requirements on the connection and
use of the parts of the platform, and the connections of an application to
the platform.
Example: OMG has specified a model of a portion of the CORBA platform in
the UML profile for CORBA. [formal-02-04-01] This profile provides a
language to use when specifying CORBA systems. The stereotypes of the
profile can be used as a set of markings.
A generic platform model can amount to a specification of a particular
architectural style.

41

Lovelace Computing

Platform
model

A platform model also provides,
for use in a platform specific model,
concepts representing the different kinds of
elements to be used in specifying
the use of the platform by an application.

42

Lovelace Computing

Platform
model

A platform model also
specifies requirements on
the connection and use
of the parts of the platform,
and the connections of an application
to the platform.

43

Lovelace Computing

Platform
model

Example:
OMG has specified a model of a portion of the
CORBA platform in the UML profile for
CORBA. [formal-02-04-01]
This profile provides a language to use when
specifying CORBA systems. The stereotypes of
the profile can be used as a set of markings.

44

Lovelace Computing

Platform
model

A generic platform model can amount to
a specification of a particular
architectural style.

45

Lovelace Computing

Platform
model

Example:
The CORBA Component Model provides
the concepts, EntityComponent,
SessionComponent, ProcessComponent,
Facet, Receptacle, EventSource, and others.
These concepts are used to specify the use of
the CORBA Component platform (CCM)
by an application.

46

Lovelace Computing

Virtual
machine

One way to achieve platform independence
is to target a model for a
technology-neutral virtual machine

A very common technique for achieving platform independence is to target a
system model for a technology-neutral virtual machine. A virtual machine is a
system that is specified independently of any specific platform and which is
realized in platform-specific ways on different platforms. A virtual machine is
a platform, and such a model is specific to that platform. But that model is also
platform independent with respect to the class of different platforms on which
that virtual machine has been implemented. This is because such models are
unaffected by the underlying platform and, hence, fully conform to the
criterion of platform independence defined in the MDA Guide.

For a PIM based on a virtual machine, transformations are not necessary.
Instead, it is the PIM of the virtual machine itself that needs to be transformed
to a PSM for a particular platform. When this is done independently of any
specific system, the platform specific virtual machine be used with any system
targeted to that virtual machine.

47

Lovelace Computing

Model
Transformation

Model transformation is the process of
converting one model to
another model
of the same system.

48

Lovelace Computing

Model
Transformation

Model transformation is the process of
converting one model to
another model
of the same system.

49

Lovelace Computing

Questions?

Does anyone have a different take
on the concepts discussed so far?

Platform?
Model?
Transformation?

50

Lovelace Computing

Questions?

Does anyone have a different take
on the concepts discussed so far?

… of the same system?

51

Lovelace Computing

Model
Transformation

Model transformation is the process of
converting one model to
another model
of the same system
or
a model
of a different system.

As we will come to discuss, model transformation can be an extremely general concept,
and MDA tools provide very general model transformation capabilities.

The point that “of the same system” wants to make is this:

In the straightforward application of MDA to build or modify a system, the
transformation from PIM to PSM is about adding platform specific detail about a
system to a platform independent specification or description of that system.

If we think about it for a minute, it becomes clear that the relation, same as, does not
even apply. Since platform specific detail is hidden in the platform independent
viewpoint, it is not possible to determine if the PIM and PSM specify the same system.
What is the case is that the PIM specifies a class of equivalent systems for different
platoforms ; the systems are equivalent in that they correspond to the same PIM.

Here is something that is true, exactly: A PIM specifies a whole class of systems, and
the system specified by a PSM produced using that PIM is a member of that class of
systems.

But, because of the generality of model transformation, it is not true that any model
produced by using a PIM and a transformation is a member of the class of models
specified by that PIM. A model transformation may produce a target model that
represents a system entirely different from the system represented by the source model.

Example–In a product line architecture, models of different products might be
produced from the same starting model using transformations.

52

Lovelace Computing

Implementation

An implementation is a specification,
which provides all the information needed
to construct a system and
to put it into operation.

53

Lovelace Computing

Separation
of concerns

— specifying a system independently of
the platform that supports it

— specifying platforms
— choosing a particular platform for the

system
— transforming the specification into one

for a particular platform.

Separation of concerns is an old engineering principle. Dijkstra is generally
credited for bringing this idea to the attention of software folk.

[] Dijkstra, A Discipline of Programming, Prentice Hall, 1976

Dijkstra: “I have a small mind and can only comprehend one thing at a time.”

Gries: “When faced with any large task, it is usually best to put aside some of
its aspects for a moment and concentrate on others.”

Dijkstra: “Study in depth an aspect of one's subject matter in isolation, for the
sake of its own consistency, all the time knowing that

one is occupying oneself with only one of the aspects.”

54

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

55

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

56

Lovelace Computing

Model

Domain model
Computation independent model
Platform independent model

57

Lovelace Computing

Domain model

— describes the situation
in which a system will be used

— may hide much or all information
about the use of automated
data processing systems

—not only as an aid to understanding,
but also a source of shared vocabulary

A model that describes the situation in which a system will be used
provides a valuable starting point. Such a model is sometimes called a
domain model or a business model. It may hide much or all
information about the use of automated data processing systems.
It is useful, not only as an aid to understanding a problem, but also as a
source of a shared vocabulary for use in other models.

58

Lovelace Computing

Computation independent
model

— the system in the environment
in which it will operate

— independent of how
the system is implemented.

—perhaps ODP enterprise and
information viewpoint models

If a model of a system is prepared showing the system in the
environment in which it will operate, that model will help to
understand exactly what the system is to do. A model using the
computation independent viewpoint is independent of how the system
is implemented.
A computation independent model might consist of two UML models,
from the ODP enterprise and information viewpoints. It might include
several models from these viewpoints, some providing more detail
than others, or focusing on particular concerns of a viewpoint.

59

Lovelace Computing

Platform independent
model

— describes the system,
but does not show details of
its use of its platform

— perhaps ODP enterprise, information
and computational viewpoint models

A platform independent model, a PIM, is built. It describes the system,
but does not show details of its use of its platform.
A PIM might consist of enterprise, information and computational ODP
viewpoint specifications.
Though independent of some class of platforms, a platform independent model
will be suited for a particular architectural style, or several.

60

Lovelace Computing

Platform
model

— choose a platform (or several) that
enables implementation of the system
with the desired architectural qualities.

— detailed model describing the platform
expressed, perhaps, in
MOF and OCL and
stored in a MOF compliant repository.

The architect will then choose a platform (or several) that enables
implementation of the system with the desired architectural qualities.

The architect will have at hand a model of that platform. Often, at present, this
model is in the form of software and hardware manuals or is even in the
architect’s head. MDA will be based on detailed platform models, for
example, models expressed in MOF and OCL, and stored in a MOF compliant
repository.

61

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

62

Lovelace Computing

Mapping

— provides specifications for
transformation of a PIM into a PSM
for a particular platform.

An MDA mapping provides specifications for transformation of a PIM
into a PSM for a particular platform. The platform model will
determine the nature of the mapping.
Examples
A platform model for EJB includes the Home and RemoteInterface as well as
Bean classes and Container Managed Persistence.

Two examples, illustrating different approaches:
Example 1: An EDOC ECA PIM contains attributes which indicate whether
an Entity in that model is managed or not, and whether it is remote or not. A
mapping from ECA to EJB will state that every managed ECA entity will
result in a Home class, and that every remoteable ECA entity will result in a
RemoteInterface. Marks associated with the mapping (with required
parameter values) are supplied by an architect during the mapping process to
indicate the style of EJB persistent storage to be used for each ECA entity, as
no information about this concept is stored in the PIM.
Example 2: A UML PIM to EJB mapping provides marks to be used to guide
the PIM to PSM transformation. It also includes templates or patterns for
code generation and for configuration of a server. Marking a UML class with
the Session mark results in the transformation of that class according to the
mapping into a session bean and other supporting classes.

63

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

64

Lovelace Computing

Mark

— represents a concept in the PSM
— is applied to an element of the PIM

to indicate how that element
is to be transformed

— not a part of the PIM

Many model mappings will define marks. A mark represents a concept
in the PSM, and is applied to an element of the PIM, to indicate how
that element is to be transformed.
The marks, being platform specific, are not a part of the platform
independent model. The architect takes the platform independent
model and marks it for use on a particular platform. The marked PIM
is then used to prepare a platform specific model for that platform.
The marks can be thought of as being applied to a transparent layer placed over
the model.

65

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

66

Lovelace Computing

Transformation

— the process of converting one model to
another model of the same system

— input is the PIM and the mapping
— result is the PSM

and a record of the transformation

The next step is to take the marked PIM and transform it into a PSM.
This can be done manually, with computer assistance, or automatically.
Model transformation is the process of converting one model to another
model of the same system. The input to the transformation is the
marked PIM and the mapping. The result is the PSM and the record of
transformation.
Using model type mapping, transformation takes any PIM specified
using one model and, following the mapping, produces a PSM
specified using another model.
Using model instance mapping, transformation takes a marked PIM
and, following the mappings, as indicated by the marks, produce a
PSM.
Example:
A platform independent model of a securities trading system (a PIM) is
transformed for the CORBA component platform. The result of the
transformation is a model of that system specific to the CORBA component
platform (a PSM) and a record of transformation showing the correspondences
between the two models.

67

Lovelace Computing

Direct to code

— transform a PIM directly to code,
without producing a PSM

— or also produce a PSM,
for use in understanding
or debugging that code

In some cases, a tool will transform a PIM directly to deployable code,
without producing a PSM. Such a tool might also produce a PSM, for
use in understanding or debugging that code.

68

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

69

Lovelace Computing

Record
of transformation

— a map from each element of the PIM
to the corresponding elements of the PSM

— also shows which parts of the mapping
were used
for each part of the transformation.

The results of transforming a PIM using a particular technique are a
PSM and a record of transformation. The record of transformation
includes a map from each element of the PIM to the corresponding
elements of the PSM, and shows which parts of the mapping were used
for each part of the transformation.
Examples:
A record of transformation shows that a particular class in the PIM becomes
three classes in the PSM, related in a certain way.
A record of transformation shows that two objects that were connected directly
in the PIM are connected in the PSM via two protocol objects and an
intervening interceptor.

The record of transformation can be made available to someone
working on either PIM or PSM. An MDA modeling tool that keeps a
record of transformation may keep a PIM and PSM in synchronization
when changes are made to either.

70

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

71

Lovelace Computing

Platform specific
model

— a model of the same system
specified by the PIM

— specifies how that system
makes use of the chosen platform.

The platform specific model produced by the transformation is a model
of the same system specified by the PIM; it also specifies how that
system makes use of the chosen platform.
A PSM may provide more or less detail, depending on its purpose. A
PSM will be an implementation, if it provides all the information
needed to construct a system and to put it into operation.
A PSM that is an implementation will provide a variety of different
information, which may include program code, the intended CORBA types of
the implementation, program linking and loading specifications, deployment
descriptors, and other forms of configuration specifications.

72

Lovelace Computing

Platform specific
model

May provide more or less detail,
depending on its purpose.

73

Lovelace Computing

Implementation

Will be an implementation,
if it provides all the information needed
to construct a system and
to put it into operation.

74

Lovelace Computing

How MDA
is used

PIM
Mapping
Mark

Transformation

Record

PSM

75

Lovelace Computing

MDA Pattern

PIM

PSM

Transformation

The drawing illustrates the MDA pattern, by which a PIM is
transformed to a PSM.
The drawing is intended to be suggestive. The platform independent
model and other information are combined by the transformation to
produce a platform specific model.
The drawing is also intended to be generic. There are many ways in
which such a transformation may be done. However it is done, it
produces, from a platform independent model, a model specific to a
particular platform.
The box with no name represents what goes into the transformation, in
addition to the platform independent model. This varies with different
styles of MDA.

76

Lovelace Computing

Generalized
MDA Pattern

PIM

PSM

Transformation

a model

another

This drawing is more generic. There are many kinds of model
transformations. Many of the same tools that will transform a PIM to a
PSM can be used for other kinds of transformation of one kind of model
to another.

77

Lovelace Computing

Platform
Independent

Model

Platform
Specific
Model

Transformation

Platform

Platform
Information

Information about the chosen platform is required to transform a PIM to a
PSM. This information is sometimes imbedded in the transformation tool.
Other tools accept information about the platform as input to the
transformation process.

78

Lovelace Computing

PIM

PSM

Additional
Information

Additional Information

The drawing extends the simple MDA pattern to show the use of
additional information.
In addition to the PIM and the platform information, additional
information can be supplied to guide the transformation.
Examples: A particular architectural style may be specified. Information may
be added to connectors to specify quality of service. Selections of particular
implementations may be made, where more than one is provided by the
transformation. Data access patterns may be specified.

Often the additional information will draw on the practical knowledge of the
designer. This will be both knowledge of the application domain and
knowledge of the platform.

79

Lovelace Computing

Using the
MDA pattern

80

Lovelace Computing

What is independent?

The MDA pattern may be applied more than once.

81

Lovelace Computing

A
platform independent model

PIM

The original PIM is an application model, designed to be independent of many
platform choices.

82

Lovelace Computing

The model
transformed

PIM

PSM

It is transformed to a PSM specific to component platforms. But the
transformation has been carried out so that the model remains independent of
the choice of a particular component platform.

83

Lovelace Computing

The model
transformed again

PIM

PSM

The MDA pattern is applied again.

The model in the role of PSM in the first transformation is in the role of PIM
in the second transformation. The resulting PSM is specific to CORBA
Components.

84

Lovelace Computing

The model transformed
a third time

PSM

PIM

PIM

It may be desirable to transform this model again, to make specialized use of
the platform in order to achieve a certain quality of service, perhaps to meet an
availability requirement.

85

Lovelace Computing

The model transformed
a third time

PSM

PIM

The original PIM, after three transformations, gives a PSM for high
availability on a CORBA Components platform.

86

Lovelace Computing

The model transformed
a third time

PSM

PIM

PSM

PIM

This can be seen as a single transformation

87

Lovelace Computing

What is a platform?

Serial transformations of this sort may or may not be common in
practice. The example does, however, raise an altogether different
question:
Wait a minute, just what counts as a platform, exactly?

88

Lovelace Computing

Some notation

89

Lovelace Computing

Some notation

A system consists of one or more applications,
supported by one or more platforms

An application

90

Lovelace Computing

Some notation

A platform

91

Lovelace Computing

A platform specific
model

PIM

PSM

The PIM on the left is a model of the application on the right; this model is in
the platform independent role. The PSM on the left is a platform specific
model of the application, for the platform shown on the right.

92

Lovelace Computing

Another platform
specific model

PIM

This is the same application and platform, from a different viewpoint.

93

Lovelace Computing

What counts as a platform?

To be adopted, a submitted technology must include a PIM and at least
one PSM; in addition, there must be an implementation or a
commitment to provide an implementation within a year. These are
three different views of the same application with its platform. The
dashed lines enclose the parts of the technology that are, from the
different viewpoints, considered to be the implementation of a
platform.
Which viewpoint is taken depends on the needs of the user of the
model.
Any of the parts of the model enclosed in the dashed line may be considered to
be the platform. Wherever it is considered to start, the platform goes all the
way down to a complete implementation.

94

Lovelace Computing

Part of a platform
hidden by abstraction

A PSM is not required to include all details of the platform. But, by
definition, an implementation must “provide the information needed to
create an object and to allow the object to participate in providing an
appropriate set of services.”
In the illustration, some of the details of the platform that supports the
application are hidden. For example, a PSM specific to the CORBA
platform may hide the details of the programming language and
operating system. A PSM specific to CORBA Components may hide
the details of CORBA along with the programming language and
operating system.

95

Lovelace Computing

Part of a platform
hidden by abstraction

When a platform provides a degree of portability, it is appropriate to
hide the details of the particular supporting platform, since portability
makes it possible to choose one or another supporting platform.
The entire platform or set of platforms is there in an implementation,
even if hidden in a PSM.
To repeat this: a PSM may or may not include a detailed model of the
platform. If it does not, either it is an abstract model, that hides those
details, or it makes reference (explicit or implicit) to another model or
models that provide the details. It is not a PSM unless it can be used to
produce an implementation. So it must include all details necessary for
an implementation, or those details must be included by reference.
Suppose, for example, that a PSM is specific to CORBA. Then it need
not include all the details necessary to implement CORBA, because it
makes implicit (or better yet, explicit) reference to the specifications of
those CORBA capabilities it uses. Either these specifications are
available to complete the PSM, or actual platforms are available which
will provide the support required to complete the implementation (in
the case of CORBA, both).

96

Lovelace Computing

Part of a platform
hidden by abstraction

What counts as a platform depends on the kind of system being
developed.
Example: From the point of view of a developer of middleware for several
operating systems, there will be platform independent and platform specific
models of the middleware. The class of platforms is the operating systems and
each target platform is a particular operating system.
What counts as a platform is relative to the purpose of the modeler.
For many MDA users, middleware is a platform, for a middleware
developer an operating system is the platform. Thus a platform-
independent model of middleware might appear to be a highly
platform-specific model from the point of view of an application
developer

97

Lovelace Computing

Interoperability:
a common platform

CORBA

98

Lovelace Computing

Interoperability:
a bridge

CORBA

99

Lovelace Computing

Interoperability:
another case

CORBA

100

Lovelace Computing

This presentation
and your workshop CD

For a version of this presentation
more complete and up to date
than the one on your CD,
have a look at:

www.joaquin.net/MDA/

101

Lovelace Computing

This presentation
and your workshop CD

The version used in the workshop
is there at the time of the workshop

By two weeks after the workshop
I hope to have another version,
based on your feedback here today.

www.joaquin.net/MDA/

102

Lovelace Computing

This presentation
and your workshop CD

The version used in the workshop
is there at the time of the workshop

By two weeks after the workshop
I hope to have another version,
based on your feedback here today.

www.joaquin.net/MDA/

103

Lovelace Computing

Model Driven Architecture

MDA
Joaquin Miller

Lovelace® Computing
representing X-Change Technologies

This is a presentation prepared for the OMG Fourth Workshop On UML™
for Enterprise Applications: Delivering the Promise of MDA

Joaquin Miller

Lovelace Computing Company
joaquin.no.spam that-sign acm the-dot org

www.joaquin.net

Lovelace is a registered trademark of Lovelace Computing Company

Presentation Copyright © 2003 Lovelace Computing Company

