

ISO/IEC JTC1/SC7/WG17 W17N0222

ITU-T X.911 ISO/IEC 15414

 Date: 05-10-06

Proposed New Version

Anaheim 2004 Output

 6 February 2004

ISO/IEC JTC 1/SC 7

Software Engineering

Secretariat: Canada (SCC)

Doc Type:

Title: Information Technology—Open Distributed Processing—
 Reference Model—Enterprise Language

 ISO/IEC 15414 | ITU-T Recommendation X.911

Source: Project Editor

Project: 1.07.77

Status: English-language proposed new edition; output from 2004 Anaheim

Action: For ballot

Distribution: SC 7 and ITU

Medium: E

Number of Pages: 49

Version: 43

Address reply to: joaquin@acm.org

ISO/IEC JTC1/SC7 Secretariat
École de technologie supérieure
1100, rue Notre-Dame Ouest
Montréal, Québec
Canada H3C 1K3

Tel. +1 514 396 8632
Fax. +1 514 396 8684

 ii

INTERNATIONAL STANDARD
ISO/IEC 15414 : Draft International Standard
ITU-T Rec. X.911 (Draft Recommendation)
ITU-T RECOMMENDATION

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.911

TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(05/2005)

COMMON TEXT DRAFT PUBLICATION

Information Technology—
Open Distributed Processing—Reference Model—
Enterprise Language

Proposed new edition

ITU-T Recommendation X.911

 iii

International Standard ISO/IEC 15414
ITU-T Recommendation X.911

Information technology – Open distributed processing –
Reference model – Enterprise language

Summary
This Recommendation | International Standard provides:

a) a language (the enterprise language) comprising concepts, structures, and rules for developing,
representing, and reasoning about a specification of an Open Distributed Processing (ODP) system from
the enterprise viewpoint (as defined in ITU-T Rec. X.903 | ISO/IEC 10746-3);

b) rules which establish correspondences between the enterprise language and the other viewpoint languages
(defined in ITU-T Rec. X.903 | ISO/IEC 10746-3) to ensure the overall consistency of a specification.

iv

Contents
0 Introduction.. 3

0.1 RM-ODP .. 3
0.2 Overview and motivation... 3

1 Scope.. 1
2 Normative references... 1
3 Terms and definitions .. 1

3.1 Definitions from ODP standards ... 1
3.2 Definitions from ODP standards extended in this specification... 3

4 Abbreviations... 3
5 Conventions ... 3
6 Concepts... 4

6.1 System concepts ... 4
6.2 Community concepts.. 4
6.3 Behaviour concepts .. 4
6.4 Policy concepts... 5
6.5 Accountability concepts... 5

7 Structuring rules... 6
7.1 Overall structure of an enterprise specification... 6
7.2 Contents of an enterprise specification.. 6
7.3 Community rules.. 7
7.4 Enterprise object rules.. 9
7.5 Common community types .. 9
7.6 Lifecycle of a community .. 9
7.7 Objective rules.. 10
7.8 Behaviour rules .. 11
7.9 Policy rules... 12
7.10 Accountability rules ... 15

8 Compliance, completeness and field of application ... 16
8.1 Compliance... 16
8.2 Completeness ... 16
8.3 Field of application .. 17

9 Enterprise language compliance.. 17
10 Conformance and reference points.. 17
11 Consistency rules ... 18

11.1 Viewpoint correspondences... 18
11.2 Enterprise and information specification correspondences... 18
11.3 Enterprise and computational specification correspondences .. 19
11.4 Enterprise and engineering specification correspondences... 20

A Annex – Model of the enterprise language ... 21
B Annex – Explanations and examples .. 24
 Index .. 40

 v

0 Introduction
The rapid growth of distributed processing has led to the adoption of the Reference Model of Open Distributed
Processing (RM-ODP). This Reference Model provides a co-ordinating framework for the standardization of open
distributed processing (ODP). It creates an architecture within which support of distribution, interworking, and
portability can be integrated. This architecture provides a framework for the specification of ODP systems.

The Reference Model of Open Distributed Processing is based on precise concepts derived from current distributed
processing developments and, as far as possible, on the use of formal description techniques for specification of the
architecture.

This Recommendation | International Standard refines and extends the definition of how ODP systems are specified from
the enterprise viewpoint, and is intended for the development or use of enterprise specifications of ODP systems.

0.1 RM-ODP

The RM-ODP consists of:
– Part 1: ITU-T Rec. X.901 | ISO/IEC 10746-1: Overview: which contains a motivational overview of

ODP, giving scoping, justification and explanation of key concepts, and an outline of the ODP
architecture. It contains explanatory material on how the RM-ODP is to be interpreted and applied by its
users, who may include standards writers and architects of ODP systems. It also contains a categorization
of required areas of standardization expressed in terms of the reference points for conformance identified
in ITU-T Rec. X.903 | ISO/IEC 10746-3. This part is not normative.

– Part 2: ITU-T Rec. X.902 | ISO/IEC 10746-2: Foundations: which contains the definition of the concepts
and analytical framework for normalized description of (arbitrary) distributed processing systems. It
introduces the principles of conformance to ODP standards and the way in which they are applied. This is
only to a level of detail sufficient to support ITU-T Rec. X.903 | ISO/IEC 10746-3 and to establish
requirements for new specification techniques. This part is normative.

– Part 3: ITU-T Rec. X.903 | ISO/IEC 10746-3: Architecture: which contains the specification of the
required characteristics that qualify distributed processing as open. These are the constraints to which
ODP standards shall conform. It uses the descriptive techniques from ITU-T Rec. X.902 |
ISO/IEC 10746-2. This part is normative.

– Part 4: ITU-T Rec. X.904 | ISO/IEC 10746-4: Architectural semantics: which contains a formalization
of the ODP modelling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2 clauses 8 and 9. The
formalization is achieved by interpreting each concept in terms of the constructs of one or more of the
different standardized formal description techniques. This part is normative.

– ITU-T Rec. X.911 | ISO/IEC 15414: Enterprise language: this Recommendation | International
Standard.

0.2 Overview and motivation

Part 3 of the Reference Model, ITU-T Rec. X.903 | ISO/IEC 10746-3, defines a framework for the specification of ODP
systems comprising:

1) five viewpoints, called enterprise, information, computational, engineering and technology, which provide
a basis for the specification of ODP systems;

2) a viewpoint language for each viewpoint, defining concepts and rules for specifying ODP systems from
the corresponding viewpoint.

The purpose of this Recommendation | International Standard is to:
– Refine and extend the enterprise language defined in ITU-T Rec. X.903 |ISO/IEC 10746-3 to enable full

enterprise viewpoint specification of an ODP system;
– Explain the correspondences of an enterprise viewpoint specification of an ODP system to other

viewpoint specifications of that system; and
– Ensure that the enterprise language when used together with the other viewpoint languages is suitable for

the specification of a concrete application architecture to fill a specific business need.

This Recommendation | International Standard uses concepts taken from ITU-T Recommendations X.902 and X.903 |
ISO/IEC 10746-2 and 10746-3 and structuring rules taken from clause 5 of ITU-T Rec. X.903 | ISO/IEC 10746-3; it
introduces refinements of those concepts, additional viewpoint-specific concepts, and prescriptive structuring rules for
enterprise viewpoint specifications. The additional viewpoint-specific concepts are defined using concepts from ITU-T
Recommendations X.902 and X.903 | ISO/IEC 10746-2 and 10746-3.

vi

This Recommendation | International Standard provides a common language (set of terms and structuring rules) to be
used in the preparation of an enterprise specification capturing the purpose, scope and policies for an ODP system. An
enterprise specification is a part of the specification of an ODP system using viewpoints defined by ITU-T
Recommendation X.903 | ISO/IEC 10746-3. The specification of the ODP system can describe any or all of:

– an existing system within its environment;
– an anticipated future structure or behaviour of that existing system within the same or an anticipated future

environment;
– a system to be created within some environment.

The primary audience for this Recommendation | International Standard is those who prepare and use such
specifications. The audience includes ODP system owners and users, including subject manager experts, and developers
and maintainers of ODP system, tools, and methodologies.

The motivation for the enterprise language is to support standardised techniques for specification. This improves
communication and helps create consistent specifications.

The preparation of specifications often falls into the category referred to as analysis or requirement specification. There
are many approaches used for understanding, agreeing and specifying systems in the context of the organisations of
which they form a part. The approaches can provide useful insights into both the organisation under consideration and
the requirements for systems to support it, but they generally lack the rigour, consistency and completeness needed for
thorough specification. The audiences of the specifications also vary. For agreement between the potential users of an
ODP system and the provider of that system, it may be necessary to have different presentations of the same system—
one in terms understood by clients, and one in terms directly related to system realization.

The use of enterprise specifications can be wider than the early phases of software engineering process. A current trend
is to integrate existing systems into global networks, where the functionality of interest spans multiple organisations. The
enterprise language provides a means to specify the joint agreement of common behaviour of the ODP systems within
and between these organisations. The enterprise specification can also be used at other phases of the system life cycle.
The specification can, for example, be used at system run-time to control agreements between the system and its users,
and to establish new agreements according to the same contract structure. Enterprise viewpoint specifications may
contain rules for inter-organisational behaviour.

This standard also provides a framework for development of software engineering methodologies and tools exploiting
ODP viewpoint languages, and a set of concepts for development of enterprise viewpoint specification languages. For
these purposes this standard provides rules for the information content of specifications and the grouping of that
information. Further requirements on the relationships between enterprise language concepts and concepts in other
viewpoints are specific to the methodologies, tools or specification languages to be developed.

An enterprise specification defines the purpose, scope, and policies of an ODP system and it provides a statement of
conformance for system implementations. The purpose of the system is defined by the specified behaviour of the system
while policies capture further restriction of the behaviour between the system and its environment or within the system
itself related to the business decisions of the system owners.

An enterprise specification also allows the specification of an ODP system that spans multiple domains and is not owned
by a single party, and specification of the collective behaviour of a system that is divided into independently specified
and independently working subsystems.

Annex A present parts of a model of the enterprise language, illustrating the concepts of the enterprise language and their
relationships. Annex B explains concepts and structuring rules of the enterprise language and provides examples of how
they may be used. These annexes are not normative.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 1

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology – Open distributed processing –
Reference model – Enterprise language

1 Scope
This Recommendation | International Standard provides:

a) a language (the enterprise language) comprising concepts, structures, and rules for developing,
representing, and reasoning about a specification of an ODP system from the enterprise viewpoint (as
defined in ITU-T Rec. X.903 | ISO/IEC 10746-3);

b) rules which establish correspondences between the enterprise language and the other viewpoint languages
(defined in ITU-T Rec. X.903 | ISO/IEC 10746-3) to ensure the overall consistency of a specification.

The language is specified to a level of detail sufficient to enable the determination of the compliance of any modelling
language to this Recommendation | International Standard and to establish requirements for new specification
techniques.

This Recommendation | International Standard is a refinement and extension of ITU-T Rec. X.903 | ISO/IEC 10746-3,
clauses 5 and 10, but does not replace them.

This Recommendation | International Standard is intended for use in preparing enterprise viewpoint specifications of
ODP systems, and in developing notations and tools to support such specifications.

As specified in clause 5 of ITU-T Rec. X.903 | ISO/IEC 10746-3, an enterprise viewpoint specification defines the
purpose, scope and policies of an ODP system. [see also 3-5.0]

2 Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of the
currently valid ITU-T Recommendations.

Identical ITU-T Recommendations | International Standards
– ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology – Open

Distributed Processing – Reference Model – Foundations.
– ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology – Open

Distributed Processing – Reference Model – Architecture.
– ITU-T Recommendation X.904 (1997) | ISO/IEC 10746-4:1998, Information technology – Open

Distributed Processing – Reference Model – Architectural semantics.

3 Definitions
3.1 Definitions from ODP standards

3.1.1 Modelling concept definitions

This Recommendation | International Standard makes use of the following terms as defined in ITU-T Rec. X.902 |
ISO/IEC 10746-2.

– action;
– activity;

Draft ISO/IEC 15414:2002 (E)

2 Draft ITU-T Rec. X.911 (10/2001)

– behaviour (of an object);
– component object [2-5.1];
– composite object;
– composition;
– configuration (of objects);
– conformance;
– conformance point;
– contract;
– <X> domain;
– entity;
– environment contract;
– environment (of an object);
– epoch;
– establishing behaviour;
– instantiation (of an <X> template);
– internal action;
– invariant;
– liaison;
– location in time;
– name;
– object;
– obligation;
– ODP standards;
– ODP system;
– permission;
– prohibition;
– proposition;
– reference point;
– refinement;
– role;
– state (of an object);
– subsystem [2-6.5];
– subtype;
– system;
– <X> template;
– terminating behaviour;
– type (of an <X>);
– viewpoint (on a system).

3.1.2 Viewpoint language definitions

This Recommendation | International Standard makes use of the following terms as defined in ITU-T Rec. X.903 |
ISO/IEC 10746-3.

– binder;
– capsule;
– channel;
– cluster;

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 3

– community;
– computational behaviour;
– computational binding object;
– computational object;
– computational interface;
– computational viewpoint;
– dynamic schema;
– engineering viewpoint;
– enterprise object;
– enterprise viewpoint;
– <X> federation;
– information object;
– information viewpoint;
– interceptor;
– invariant schema;
– node;
– nucleus;
– operation;
– protocol object;
– static schema;
– stream;
– stub;
– technology viewpoint;
– <viewpoint> language.

3.2 Definitions from ODP standards extended in this specification

This Recommendation | International Standard extends the definition of the following term originally defined in ITU-T
Rec. X.902 | ISO/IEC 10746-2. [2-11.2.7]:

– policy.

The extended definition is in clause 6.

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations apply.

ODP Open distributed processing
RM-ODP Reference Model of Open Distributed Processing

(ITU-T Recommendations X.901 to X.904 | ISO/IEC 10746 Parts 1-4)

5 Conventions
This Recommendation | International Standard contains references to Parts 2 and 3 of the RM-ODP and to the normative
text of this Recommendation | International Standard. Each reference is of one of these forms:

 [2-n.n] — a reference to clause n.n of RM-ODP Part 2: Foundations, X.902 | IS 10746-2;

 [3-n.n] — a reference to clause n.n of RM-ODP Part 3: Architecture, X.903 | IS 10746-3.

 [n.n] — a reference to clause n.n of this Recommendation | International Standard;

Draft ISO/IEC 15414:2002 (E)

4 Draft ITU-T Rec. X.911 (10/2001)

For example, [2-9.4] is a reference to Part 2 of the reference model, (ITU-T Rec. X.902 | ISO/IEC 10746-2), subclause
9.4 and [6.5] is a reference to clause 6.5 of this Recommendation | International Standard. These references are for the
convenience of the reader.

This Recommendation | International Standard also contains some text which is a modification of text from Part 3 of the
reference model, ITU-T Rec. X.903 | ISO/IEC 10746-3. Such text is marked by a reference like this: [see also 3-5.n]. The
modifications are authoritative with respect to the enterprise language.

6 Concepts
The concepts of the enterprise language defined in this document comprise:

– the concepts identified in 3.1.1 and 3.1.2 as they are defined in ITU-T Rec. X.902 | ISO/IEC 10746-2 and
in ITU-T X.903 | ISO/IEC 10746-3;

– the concepts defined in this clause.

This clause defines new concepts and refines the definition of policy from ITU-T Rec. X.902 | ISO/IEC 10746-2.
[2-11.2.7] The grouping into subclauses and the headings of the subclauses of this clause are not normative.

6.1 System concepts

6.1.1 scope (of a system): The behaviour that system is expected to exhibit.

6.1.2 field of application (of a specification): The properties the environment of the ODP system shall have for the
specification of that system to be used.

6.2 Community concepts

6.2.1 objective (of an <X>): Practical advantage or intended effect, expressed as preferences about future states.
NOTE 1 – Some objectives are ongoing, some are achieved once met.
NOTE 2 – In the text of ITU-T Rec. X.903 | ISO/IEC 10746-3 [3-5] the terms, purpose and objective, are synonymous. The
enterprise language emphasizes the term, objective, and emphasizes the need of expressing an objective in measurable terms.

6.2.2 community object: A composite enterprise object that represents a community. Components of a community
object are objects of the community represented.

6.3 Behaviour concepts

6.3.1 actor (with respect to an action): A role (with respect to that action) in which the enterprise object fulfilling
the role participates in the action. That object may be called an actor.

NOTE – It may be of interest to specify which actor initiates that action.

6.3.2 artefact (with respect to an action): A role in (with respect to that action) which the enterprise object
fulfilling the role is referenced in the action. That object may be called an artefact.

NOTE – An enterprise object that is an artefact in one action can be an actor in another action.

6.3.3 resource (with respect to an action): A role (with respect to that action) in which the enterprise object
fulfilling the role is essential to the action, requires allocation, or may become unavailable. That object may be called a
resource.

NOTE 1 – Allocation of a resource object may constrain other behaviours for which that resource is essential.
NOTE 2 – A consumable resource object may become unavailable after some amount of use. Any resource object may become
unavailable after some amount of time (for example, in case a duration or expiry has been specified for the resource).

6.3.4 interface role: A role in a community, identifying behaviour which takes place with the participation of
objects that are not members of that community.

6.3.5 process: A collection of steps taking place in a prescribed manner and leading to an objective.
NOTE 1 – A process may have multiple starting points and multiple end points.
NOTE 2 – The prescribed manner may be a partially ordered sequence.
NOTE 3 – A process specification can be a workflow specification.
NOTE 4 – The activity structure concepts provided in subclause 13.1 of ITU-T Rec. X.902 | ISO/IEC 10746-2 may be used, after
substitution of 'step' for 'action' and 'process' for 'activity', to specify the structure of a process.
NOTE 5 – An enterprise specification may define types of processes and may define process templates.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 5

6.3.6 step: An abstraction of an action, used in a process, that may leave unspecified objects that participate in that
action.

6.4 Policy concepts

6.4.1 policy: A set of rules related to a particular purpose. A rule can be expressed as an obligation, an authorization,
a permission or a prohibition. [see also 2-11.2.7]

NOTE 1 – Not every policy is a constraint. Some policies represent an empowerment.
NOTE 2 – This definition refines subclause 11.2.7 ITU-T Rec. X.902 | ISO/IEC 10746-2, by adding authorization.

6.4.2 authorization: A prescription that a particular behaviour shall not be prevented.
NOTE – Unlike a permission, an authorization is an empowerment.

6.4.3 violation: An behaviour contrary to that required by a rule.
NOTE – A rule or policy may provide behaviour to occur upon violation of that or some other rule or policy.

6.5 Accountability concepts

6.5.1 party: An enterprise object modelling a natural person or any other entity considered to have some of the
rights, powers and duties of a natural person.

NOTE 1 – Examples of parties include enterprise objects representing natural persons, legal entities, governments and their parts,
and other associations or groups of natural persons.
NOTE 2 – Parties are responsible for their actions and the actions of their agents.

The following concepts are used to identify actions which involve the accountability of a party.

6.5.2 commitment: An action resulting in an obligation by one or more of the participants in the act to comply with
a rule or perform a contract.

NOTE – The enterprise object(s) participating in an action of commitment may be parties or agents acting on behalf of a party or
parties. In the case of an action of commitment by an agent, the principal becomes obligated.

6.5.3 declaration: An action that establishes a state of affairs in the environment of the object making the
declaration.

NOTE – The essence of a declaration is that, by virtue of the act of declaration itself and the authority of the object or its principal,
it causes a state of affairs to come into existence outside the object making the declaration.

6.5.4 delegation: The action that assigns authority, responsibility or a function to another object.
NOTE – A delegation, once made, may later be withdrawn.

6.5.5 evaluation: An action that assesses the value of something.
NOTE 1 – For example, the action by which an ODP system assigns a relative status to some thing, according to estimation by the
system.
NOTE 2 – Value can be considered in terms of usefulness, importance, preference, acceptability, etc.; the evaluated target may be,
for example, a credit rating, a system state, a potential behaviour, etc.

6.5.6 prescription: An action that establishes a rule.

6.5.7 agent: An enterprise object that has been delegated (authority, responsibility, a function, etc.) by and acts for a
party (in exercising the authority, carrying out the responsibility, performing the function, etc.).

NOTE 1 – An agent may be a party or may be the ODP system or one of its components. Another system in the environment of
the ODP system may also be an agent of some party.
NOTE 2 – The delegation may have been direct, by a party, or indirect, by an agent of the party having authorization from the
party to so delegate.

6.5.8 principal: A party that has delegated (authority, a function, etc.) to another.

7 Structuring rules
This clause refines and extends the structuring rules defined in subclause 5.2 of ITU-T Rec. X.903 | ISO/IEC 10746-3, as
they apply to the concepts of community, enterprise object, objective, behaviour and policy. It defines structuring rules
for the accountability concepts defined in 6.5. It uses the concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, in
subclause 5.1 of ITU-T Rec. X.903 | ISO/IEC 10746-3 and in clause 6.

Draft ISO/IEC 15414:2002 (E)

6 Draft ITU-T Rec. X.911 (10/2001)

7.1 Overall structure of an enterprise specification

An enterprise specification of an ODP system is a description of that system and relevant parts of its environment. The
enterprise specification focuses on the scope and purpose of that system and the policies that apply to it in the context of
its environment.

NOTE 1 – The environment of an ODP system and the ODP system itself may span multiple organizations. More than one party
may own the ODP system.
NOTE 2 – An enterprise specification may specify the collective behaviour of separately specified and inter-working subsystems
of the ODP system.

A fundamental structuring concept for enterprise specifications is that of community. A community is a configuration of
enterprise objects that describes a collection of entities (e.g. human beings, information processing systems, resources of
various kinds and collections of these) that is formed to meet an objective. These entities are subject to an agreement
governing their collective behaviour. The assignment of actions to the enterprise objects that comprise a community is
defined in terms of roles. (See 7.8.1 and 7.8.2.)

The enterprise specification includes, within the areas of interest of the specification users, the objective and scope of the
ODP system, the policies for the ODP system (including those of any environment contracts), the community in which
ODP system is specified and the roles fulfilled by the ODP system and other enterprise objects in that community, and
the processes in which the ODP system and enterprise objects in its environment participate.

An enterprise specification of an ODP system includes at least the community in which that system may be represented
as a single enterprise object interacting with its environment. Whether the specification actually includes that level of
abstraction is left for the specifier to decide.

NOTE 2 – This minimal enterprise specification describes the objective and scope of the ODP system; this description is
necessary for completeness of the enterprise specification.

Where necessary for clarity or completeness of description of the behaviour of the ODP system, the enterprise
specification can include any other communities of which the ODP system or its components are members, and other
communities of which enterprise objects in the environment of the ODP system are members.

NOTE 3 – The set of communities in an enterprise specification may include, for example, communities at both more abstract and
more detailed levels than the minimal enterprise specification, as well as communities relating to functional decomposition of the
ODP system and to ownership of the ODP system and its parts.

The enterprise specification can also be structured in terms of a number of communities interacting with each other.
NOTE 4 – This may be, for example, a federation.

The scope of the system is defined in terms of its intended behaviour; in the enterprise language this is expressed in
terms of roles or processes or both, policies, and the relationships of these.

NOTE 5 – It may be meaningful to discuss the intended, delivered or expected scope of a system in various phases of planning,
development or deployment. In such cases, the term ''scope'' should be appropriately qualified.

A complete ODP system specification indicates rules for internal consistency in terms of relationships between various
viewpoint specifications and a complete enterprise specification contains conformance rules that define the required
behaviour of the described ODP system

This clause defines how the concepts identified in clause 3 or defined in clause 6 are used in an enterprise specification.

7.2 Contents of an enterprise specification

An enterprise specification is structured in terms of the elements explained in 7.1 and the other concepts identified in
clause 6, as well as the relationships between them.

For each of these elements, depending on the specifier's choice and desired level of detail, the enterprise specification
provides:

– the characteristics of the element; or
– the type or types of the element; or
– a template for the element.

An enterprise specification provides a pattern for realization of an ODP system in its environment. As such it may be
realized once, never, or many times, depending upon the objective of the specifier. This means that the behaviour defined
may also be observable any number of times, depending on when and where the specification is realized. It is therefore
necessary to take care of the context when interpreting statements about the occurrence of the concepts in an enterprise
specification.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 7

In particular, when distinguishing type and occurrence in a specification, the objective is normally to distinguish between
multiple occurrences of a single type within the specification, and not to imply a constraint on how often the
specification can be realized in the world. The definitions in this document should be interpreted in the context of
specification, without constraining when and where the specification should be realized.

The enterprise language makes no prescription about the specification process nor about the level of abstraction to be
used in an enterprise specification.

NOTE 1 – No recommendations are made about the relative merits of modelling from top-down or bottom-up. Nor is there a
recommended sequencing of the development of viewpoint specifications.
NOTE 2 – It is a design choice whether a specification deals with a specific implementation by, for example, identifying
individual enterprise objects, or deals with a more flexible architecture by identifying types and rules for assigning enterprise
objects to roles.
NOTE 3 – A specification may be partitioned because of readability, reuse of specification fragments in other specifications or
interoperability of enterprise objects.
NOTE 4 – Roles and communities, as well as types and templates, can be private to a specification and development environment,
or they can be stored in a repository that can be shared by a wider audience of several development environments and groups.

7.3 Community rules

7.3.1 Community

An enterprise specification states the objective of a community, how it is structured, what it does, and what objects
comprise it. The objective of the community is expressed in a contract that specifies how the objective can be met. This
contract:

– states the objective for which the community exists;
– governs the structure, the behaviour and the policies of the community;
– constrains the behaviour of the members of the community;
– states the rules for the assignment of enterprise objects to roles.

The contract of the community specifies constraints that govern the existence or behaviour of the collection of entities
described by the community. When a collection of entities is represented as a community, there may already be some
implicit or explicit agreement about those entities. Terms of that agreement may appear in the contract of the community.
An enterprise specification may include all or part of that agreement by reference. Such references relate the elements of
the specification to terms of that agreement. In particular, commitments of enterprise objects may be subject to that
agreement.

The behaviour of the community is such that it meets its objective. The enterprise objects of a community are
constrained by the rules of the contract of the community.

The contract can be put in place by a defined behaviour carried out by enterprise objects or the contract may be
prescribed to exist by the enterprise specification.

The collective behaviour of the community is specified in terms of one or more of the following elements:
– the roles of the community (including those roles which define how a community interacts with its

environment);
– the processes that take place in the community;
– the assignment of roles to steps in processes;
– policies that apply to the roles and processes; and
– identification of those actions for which parties are accountable.

This collective behaviour is constrained by the policies associated with roles and processes and by the contract of the
community.

The behaviours of objects in a community are subject to the contract of that community and to the constraints specified
in relationships between those objects.

The community is further defined in terms of the following elements:
– roles;
– policies for assignment of enterprise objects to roles;
– relationships between roles;
– relationships of roles to processes;

Draft ISO/IEC 15414:2002 (E)

8 Draft ITU-T Rec. X.911 (10/2001)

– policies that apply to roles and to relationships between roles;
– policies that apply to relationships between enterprise objects in the community;
– behaviour that changes the structure or the members of the community during the lifetime of that

community.
NOTE 1 – Types of communities or a community template may be used in the specification of a community.
NOTE 2 – Types of communities may be related by refinement.
NOTE 3 – A family of related contracts may be generated from a contract template. Some aspects of the contract (e.g.
membership) may only apply to particular instantiations of the contract template, while other aspects may apply to all
instantiations of the contract template. For example, assignment rules and policies can be considered as parameters in a contract
template. The style of contract specification determines the method of community establishment, as well as other aspects of the
community life-cycle.
NOTE 4 – The specification of a community may include specific enterprise objects, relationships between those objects, and
relationships of those object to enterprise objects assigned to roles in that community.

7.3.2 Relationships between communities

An enterprise specification can include one or more communities. Interactions between enterprise objects fulfilling
appropriate roles within different communities can be considered as interactions between those communities.

Communities may interact in the following ways:
– a community object fulfils one or more roles in other communities;
– two or more community objects interact in fulfilling roles in some other community;
– the enterprise specification requires the same object to fulfil specific roles in more than one community

and the behaviour of the object in any given role may affect its behaviour in other roles;
– an object, in fulfilling an interface role (see 7.8.3) of one community, interacts with an object fulfilling an

interface role in another community
– a community includes behaviour for creating new communities.

NOTE 1 – For example, federation establishment means creation of a new community, which involves putting in place the
contract of the community, including the structure and policies for that community.
NOTE 2 – For interactions involving community objects and the communities they represent see 7.8.3 – Interface roles and
interactions between communities.

For each of these ways of interacting there is an invariant that determines the constraints on the collective behaviour of
the communities concerned.

These invariants include:
– where a community object fulfils one or more roles in another community, the community that the

community object represents is governed by the policies of the other community;
– where two or more community objects interact in fulfilling roles in some other community, the

communities that the community objects represent are related by those interactions;
– where the same object is required to fill specific roles in more than one community, an invariant specifies

how the actions of that object affect those communities;
– where the same object is required to fill specific roles in more than one community, that object becomes

governed by the policies of all those communities;
– where two or more communities interact, there is a set of policies common to those communities.

NOTE 3 – Where two communities interact, an implicit community may be considered, such that the community objects
representing both communities are members of and are governed by the policies of that community. The element of shared
objective and the common set of policies can be formed either at design time and included in the specifications of the communities
or left for run-time negotiation or testing of acceptability during community population.
NOTE 4 – The communities involved may have differing rules; enterprise object must be able to conform to all these rules.

7.4 Enterprise object rules

An enterprise specification will include enterprise objects; an enterprise object is any object in an enterprise
specification. Any enterprise objects and the entities they model are those felt to be necessary or desirable to specify the
system from the enterprise viewpoint or to understand the enterprise specification.

NOTE 1 – An enterprise object may be a model of a human being, a legal entity, an information processing system, a resource or a
collection or part of any of these.

An enterprise object may be refined as a community at a greater level of detail. Such an object is then a community
object.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 9

All enterprise objects in an enterprise specification fulfil at least one role in at least one community. In fulfilling their
roles, enterprise objects participate in actions, some of which are interactions with other enterprise objects. The
behaviour of an enterprise object is restricted by the roles to which it is assigned.

An enterprise object may be a member of a community because:
– by design the community includes the object;
– the object becomes a member of the community at the time of creation of that community; or
– the object becomes a member of the community as a result of dynamic changes in the configuration of the

community.
NOTE 2 – The contract of the community includes rules for the assignment of enterprise objects to roles; thus, to establish a
community it is not necessary to identify the enterprise objects of that community.
NOTE 3 – The contract of the community can include rules that change the community structure (for example, the number of
roles).

7.5 Common community types

Two common community types are:
– <X>-domain.
– <X>-federation.

Communities of these types can be specified so that they overlap totally or partially. These basic community types do not
imply any hierarchical relationships. A specification may choose to use some or none of these community types.

7.5.1 <X>-domain community type

An <X>-domain community comprises an <X>-domain of enterprise objects in the roles of controlled objects and an
enterprise object in the role of controlling object for the <X>-domain. The <X>-domain community establishes the
characterizing relationship <X> between the enterprise objects in the roles of controlled objects and the enterprise object
in the role of controlling object.

7.5.2 <X>-federation community type

An <X>-federation community is a community of some number of pre-existing communities cooperating to achieve a
shared objective. Each member of a federation agrees by participating in the federation to be bound by the contract of
the community (which may include obligations to contribute resources or to constrain behaviour) so as to pursue the
shared objective. At the same time, a federation preserves the autonomy of the original participants. The specification of
a federation may hide any aspects of the members not directly relevant to the shared objective; it may include defined
behaviour that enables a participant to withdraw from the federation at any time.

7.6 Lifecycle of a community

7.6.1 Establishing a community

An enterprise specification can include establishing behaviour for a community.

The establishing behaviour may be implicit or explicit, but it establishes the required structures and responsibilities to
maintain and control the community, for example, the contract of the community, the policies for the community, and
the objects in the community. Objects of the community may need to be instantiated as a part of the establishing
behaviour.

7.6.2 Assignment policy

The establishing behaviour by which a community is established includes the assignment of enterprise objects to roles.
The contract of the community specifies an assignment policy, rules for choosing enterprise objects to fulfil the specified
roles. The enabled behaviour is consistent with the roles.

NOTE 1 – The role/object relationship is not a type/instance relationship.
NOTE 2 – The assignment process can be late and dynamic, i.e. a role can be fulfilled by an enterprise object through a match-
making process that considers, with respect to the requirements stated for the role, the interfaces and behaviour of that object, and,
in the case of a community object, the policies of the community it represents.

Members of the community may be selected on demand according to the assignment policy for that community.

The rules of the assignment policy can directly identify the objects, or may use a supporting mechanism with more
complex assignment rules. The rules may be based on object identifiers, relationships between objects, object
capabilities, technologies, preceding commitments, object behaviour, etc.

Draft ISO/IEC 15414:2002 (E)

10 Draft ITU-T Rec. X.911 (10/2001)

7.6.3 Changes in a community

Changes in the structure or behaviour of a community can occur only if an enterprise specification includes behaviour
that can cause such changes.

The changes to be considered here include:
– addition, change, and removal of policies or rules;
– addition, change, and removal of roles;
– addition and removal of enterprise objects;
– addition, change, and removal of processes or steps.

NOTE – Changes to a community shall maintain the overall consistency of the contract of that community.

The enterprise objects assigned to roles in the community can be changed during the lifetime of the community. As a
consequence, a role can, subject to other constraints, have no enterprise object assigned to it. Still, the community is
continuously responsible for the obligations placed on that role.

If an enterprise object ceases to fulfil the role to which it is assigned according to an assignment rule, that object violates
the contract of the community.

7.6.4 Terminating a community

An enterprise specification can include terminating behaviour for a community.
NOTE 1 – For example, a contract of a community may provide for termination when the objective is achieved. A violation may
be associated with a recovery behaviour, which may be the termination of the community.
NOTE 2 – Some communities are permanent and never terminate.

7.7 Objective rules

Every community has exactly one objective. The objective is expressed in a contract which specifies how the objective
can be met.

An enterprise specification may decompose the objective of a community into sub-objectives. A sub-objective may be
assigned to a collection of roles; in that case, the behaviour of the collection of roles is specified to meet the sub-
objective and the sub-objective is met by the collection of objects performing the actions of the collection of roles.

The purpose of an ODP system is expressed as one or more objectives (or sub-objectives) of the community or set of
communities in which the ODP system fulfils roles. If the ODP system is itself modelled as a community, then the
purpose of the system is the objective of that community.

A sub-objective may be assigned to a process; in that case, the process is specified to meet the sub-objective and the sub-
objective is met by the actions of objects performing the process. In this case, the sub-objective defines the state in which
the process terminates.

The policies of a community restrict the community behaviour in such a way that it is possible to meet the objective.
Such policies result in behaviour that suits the objective of the community.

When a community-object fulfils a role in another community, the objective of the community of which the
community-object is an abstraction is consistent with any sub-objectives assigned to that role in the other community.

NOTE – An enterprise specification may provide for detection of conflicts in objectives and for resolution of those conflicts.

7.8 Behaviour rules

7.8.1 Roles and processes

The behaviour of a community is a collective behaviour consisting of the actions in which the objects of the community
participate in fulfilling the roles of the community, together with a set of constraints on when these actions may occur.

NOTE 1 – There are many specification styles for expressing when actions may occur (e.g. sequencing, pre-conditions, partial
ordering, etc.). The modelling language chosen for expressing an enterprise specification may impose certain styles.

The assignment of actions to the enterprise objects that comprise a community is defined in terms of roles. A role
identifies an abstraction of the community behaviour. All of the actions of that role are associated with the same
enterprise object in the community. Each action of the community is either part of a single role behaviour or is an
interaction that is part of more than one role behaviour. Each of these abstractions is labelled as a role. The behaviour
identified by that role is subject to the constraints specified in the contract and structure of the community. In contrast to
the specification of actions and their ordering in terms of processes (see below), the emphasis is on the enterprise objects
that participate in the particular behaviour.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 11

Roles are used to decompose the behaviour of the community into parts that can each be performed by an enterprise
object in the community. The enterprise object that performs the behaviour of a role is said to fulfil that role within the
community or is said to be assigned to that role within the community.

Each action will be part of at least one role, but can be part of many roles (when the action involves an interaction).

The actions and their ordering can be defined in terms of processes. A process identifies an abstraction of the community
behaviour that includes only those actions that are related to achieving some particular sub-objective within the
community. Each abstraction is labelled with a process name. In contrast to the specification of actions as related to roles
(see above), the emphasis is on what the behaviour achieves.

Processes decompose the behaviour of the community into steps.
NOTE 2 – The choice of using a role-based or process-based modelling approach will depend on the modelling method used and
the aim of modelling. A combination of the two approaches may be used.

7.8.2 Role rules

In a contract of a community, each role stands as a placeholder for some enterprise object that exhibits the behaviour
identified by the role. For each role there is an assignment rule that sets requirements for objects that may fulfil that role.

An enterprise object may fulfil several roles in one community, and may fulfil roles in several communities. An object
fulfilling several roles becomes constrained simultaneously by all the behaviours identified by those roles and by the
policies that apply to those roles.

NOTE 1 – If the term '<X> object' is used in an enterprise specification, where <X> is a role, it is be interpreted as meaning 'an
enterprise object fulfilling the role, <X>'. Where an enterprise object fulfils multiple roles, the names can be concatenated.

At any location in time at most one enterprise object fulfils each role. The constraints of the behaviour identified by the
role become constraints on the object fulfilling the role. A role may be fulfilled by different objects at different times or
be unfulfilled, provided that the specification of the community so permits.

An enterprise specification may include a number of roles of the same type each fulfilled by distinct enterprise objects,
possibly with a constraint on the number of roles of that type that can occur.

NOTE 2 – Examples are modelling the members of a committee and modelling the customers of a service.

An enterprise object assigned to a role shall be of a type behaviourally compatible with that role, unless the specification
includes mechanisms to determine and resolve any incompatibilities. [2-9.4]

NOTE 3 – Enterprise specifications may refer to existing mechanisms for determining and resolving incompatibilities between
types of objects and requirements set by roles, thus enlarging the set of objects acceptable for a given role.

An enterprise specification may allow roles to be created or deleted during the lifetime of the community. The role
lifetime is contained within the community lifetime, and the period for which a particular enterprise object fulfils a given
role is contained within the lifetime of that role.

NOTE 4 – The constraints of the community must be satisfied throughout its lifetime. However, these invariants may change; this
may determine different epochs in this lifetime. Such changes may lead to changes in the sets of roles and in the sets of
relationships between roles of the community.

An assignment policy is a set of rules of a community which govern the selection of an enterprise object to fulfil a role.
NOTE 5 – The rules define what the object to fulfil a role shall be capable of doing and not restricted from doing by earlier
commitments, and what relationships to other objects are required or prohibited.

7.8.3 Interface roles and interactions between communities

One or more roles in a community may identify behaviour that includes interactions with objects outside that
community; these are interface roles.

In such a case a community may be specified at two different levels of abstraction:
– as a configuration of enterprise objects, where some of these objects fulfil interface roles; and
– as a community object that is an abstraction of the community. Interactions in which that community

object can participate as part of some other community are identified by the interface roles of the
community which that community object represents.

The behaviour identified by an interface role may include internal actions.

Draft ISO/IEC 15414:2002 (E)

12 Draft ITU-T Rec. X.911 (10/2001)

7.8.4 Enterprise objects and actions

A way of categorizing the involvement of an enterprise object in an action is to consider it as having a role with respect
to that action:

– The object can participate in carrying out the action; in this case it is said to fulfil an actor role or to be an
actor with respect to that action.

– The object can be mentioned in the action; in this case it is said to fulfil an artefact role or to be an artefact
with respect to that action.

– The object can both be essential for the action and require allocation or possibly become unavailable; in
this case it is said to fulfil a resource role or to be a resource with respect to that action.

NOTE 1 – For every action there is at least one participating enterprise object. Where two or more enterprise objects participate in
an action, it is an interaction. When only one enterprise object participates in an action, it may be an interaction, if the object
interacts with itself. [2-8.3]
NOTE 2 – The specification of a role states the behaviour associated with that role, the policies applying to that role, the
responsibilities associated with that role, and the relationships between roles. For example, for each role that specification includes
descriptions of all actions and, for each action, identification of all the artefacts mentioned in the action and the resources used.
NOTE 3 – In this clause, the concept, role, is used in the context of the community in which a role is specified. Thus an object’s
role is an identifier for some behaviour that the object exhibits in that community. In certain circumstances the behaviour
identified is a specific action; in such cases, this is explicitly specified.

An actor in an action can also be an artefact with respect to that action. Likewise, an actor in an action can also be a
resource with respect to that action (if it itself is used in the action).

When a resource is essential for some action, the action is constrained by the availability of that resource.

7.8.5 Process rules

In an enterprise specification, a process is an abstraction of the behaviour of some configuration of objects in which the
identities of objects have been hidden as a result of the abstraction.

A process is a collection of steps taking place in a prescribed manner and leading to an objective. A step may be
associated with multiple roles. Every step shall have one or more actors.

The process specification shall include specification of how it is initiated and how it terminates.

The collective behaviour of a community may be represented as a set of processes. This set can be seen as a more
abstract process performed by a single role fulfilled by a community-object. Also, a step of a process can be further
refined as a more detailed process.

7.9 Policy rules

7.9.1 The specification of a policy

A policy identifies the specification of a behaviour, or constraints on a behaviour, that can be changed during the lifetime
of the ODP system or that can be changed to tailor a single specification to apply to a range of different ODP systems.
Changes in the policies of a community during its lifetime can occur only if an enterprise specification includes
behaviour that can cause such changes.

Policies may apply to a community as a whole, to enterprise objects that fulfil roles in that community (regardless of
which role), to roles (i.e. to all actions named by those roles), or to action types. They may also apply to the collective
behaviour of a set of enterprise objects.

The specification of a policy includes:
– the name of the policy;
– the rules, expressed as obligations, permissions, prohibitions and authorizations;
– the elements of the enterprise specification affected by the policy;
– behaviour for changing the policy.

The specification of policy may cover the degree to which, and the circumstances in which, there can be delegation to
one enterprise object by another.

NOTE 1 – A policy is a named placeholder for a piece of behaviour used to parameterise a specification in order to facilitate
response to later changes in circumstances. The behaviour of systems satisfying the specification can be modified by changing the
policy value, subject to constraints associated with the policy in the original specification. In these terms, a policy is an aspect of
the specification that can be changed, and a policy value is the choice in force at any particular instant. Thus one might speak of a
scheduling policy with a FIFO policy value.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 13

NOTE 2 – Policy may, for example, be used to configure generic objects to apply them in some specific situation, or to express a
pervasive decision that affects many objects.
NOTE 3 – Policies may cover, for example, rules about:

-- behaviour (for example, processes);
-- qualities of service;
-- the names or types of objects with which a given object may interact;
-- the technology by means of which interactions may be performed;

NOTE 4 – Policies for a community may be composed from other policies; other communities may be subject to the same
policies; policies may be specified in a community template; the template may include parameters used in establishing policies.
NOTE 5 – Policies for a community may form part of a hierarchy of policies. This may position the community within a larger
environment, for example, with respect to some organizations.
NOTE 6 – Policies for a community are established when the community is specified or when it is established according to the
specified establishing behaviour. The establishing behaviour may involve already established other communities or the controlling
objects of <X> domain communities.

An enterprise object shall conform to all policies in each community in which it participates.

When an enterprise object of a community fulfils a role in another community, the policies of the two communities that
apply to that object might conflict. Where an enterprise object is subject to policies of more than one community, the
enterprise specification shall ensure that policy conflicts do not exist, or specify how policy conflicts are to be prevented
or discovered and resolved, or state that policy conflicts are allowed to cause failures.

NOTE 7–Examples of how an enterprise specification may specify how conflict is to be prevented or resolved include
specification of a policy governing the assignment of roles to objects where such conflict may arise, specification of a policy
prescribing modification of behaviour, and specification of a mechanism for modification of conflicting policies.

Establishing an <X> federation community involves establishing a set of policies for that community. An enterprise
object in the <X> federation community shall conform both to the policies of the <X> domain community to which it
belongs and to the policies of the <X> federation community.

NOTE 8–In an inter-organisational environment, the policies for each domain community and for the federation community may
have separate lifecycles.
NOTE 9– The mechanisms for conflict management may be supported by the specification language or the runtime environment
of the systems involved, and thus not necessarily explicitly be visible in the enterprise specification.
NOTE 10– Examples of policy conflict cases are:

a. (Specification-time assurance) The specifications of the federation communities are compared and any conflicts are
resolved in the specifications.
b. (Run-time prevention) Forming federations with policy conflicts is prevented by checking consistency of policies
while assigning objects to roles in the federation community.
c. (Run-time discovery and resolution) The federation community includes a behaviour to resolve the conflict by
changing policies.
d. (Failure handling) The specification of the federation community provides sanctions or alternative behaviour for
cases where behaviour has failed because of policy conflicts.

The behaviour for changing the policy may include behaviour that changes the rules of that policy and behaviour that
replaces that policy with a named different policy.

NOTE 11 – The behaviour may include constraints on changing that policy.
NOTE 12 – There may be no behaviour for changing the policy (that is, the policy is not changed during the lifetime of the
community).
NOTE 13 – Behaviour to negotiate and change policies may be necessary to enable formation of an <X> federation

7.9.2 The specification of obligations, permissions, prohibitions and authorizations

The following subclauses provide a way of specifying policies:

7.9.2.1 Obligation

An obligation is defined by:
– an authority that prescribes the obligation;
– an identified behaviour that is subject to that authority;
– a role or roles involved in that behaviour that are subject to the authority;
– a subset of that behaviour that is required to occur;
– optionally, an object or objects that may fulfil the roles involved.

Draft ISO/IEC 15414:2002 (E)

14 Draft ITU-T Rec. X.911 (10/2001)

When the obligation applies, the enterprise objects fulfilling the roles that are subject to the authority shall engage in the
required behaviour.

A standing obligation is an obligation that always applies.

7.9.2.2 Permission

A permission is defined by:
– an authority that prescribes the permission;
– an identified behaviour that is subject to that authority;
– a role or roles involved in that behaviour that are subject to the authority;
– a subset of that behaviour that is allowed to occur;
– optionally, an object or objects that may fulfil the roles involved.

When the permission applies, the enterprise objects fulfilling the roles that are subject to the authority are allowed to
engage in the allowed behaviour.

NOTE 1 – There is, however, no guarantee that the action succeeds. For example, the action may have participants in other
domains in which the action is prohibited.

An enterprise specification may specify that interactions between enterprise objects of a community may occur only
when permission for the interaction exists. Such permissions may apply either to a particular role in the interaction or to
the interaction as a whole.

NOTE 2 – In such cases, if permission required for an interaction is missing, that interaction fails and therefore the enterprise
objects may fail to fulfil their roles.

7.9.2.3 Prohibition

A prohibition is defined by:
– an authority that prescribes the prohibition;
– an identified behaviour that is subject to that authority;
– a role or roles involved in that behaviour that are subject to the authority;
– a subset of that behaviour that shall not occur.

When the prohibition applies, the enterprise objects fulfilling the roles that are subject to the authority shall not engage in
the prohibited behaviour.

NOTE – An enterprise specification may specify a behaviour by means of which the prohibited behaviour is prevented.

7.9.2.4 Authorization

An authorization is defined by:
– an authority that prescribes the authorization;
– an identified behaviour that is subject to that authority;
– a role or roles involved in that behaviour that are subject to the authority;
– a subset of that behaviour that is allowed to occur;
– optionally, an object or objects that may fulfil the roles involved.

When the authorization applies, the enterprise objects fulfilling the roles that are subject to the authority shall not be
prevented from engaging in the authorized behaviour.

Authorizations will not necessarily be effective outside the domain controlled by the authority. In federations the effect
of authorizations is determined by the contract of the federation.

7.9.3 Policy violations

Some violations are the result of defective specification or implementation of behaviour. Others are caused by
inconsistent assumptions of communicating parties about policies.

NOTE – These may arise, for example, in a federation where there is not full control of the interacting objects or in other
situations where an action is not considered to be essential enough to be specified with policies in detail for all possible
participants of an interaction.

An enterprise specification can provide mechanisms for detecting violations and for appropriate recovery or sanction
mechanisms.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 15

A way of specifying policies is as policed and enforced, or unpoliced.

If policies are specified as policed and enforced this can be specified to be by optimistic or pessimistic means.

Pessimistic enforcement is preventative and requires the specification of mechanisms to ensure that the obligated actions
occur, prohibited actions do not occur, and authorized actions are not prevented. Pessimistic enforcement is specified
when trust is low (i.e. when non-compliance is expected) and the damage caused by non-compliance is potentially high,
and when viable preventative mechanisms can be created and/or effective sanctions can be applied after non-compliance
occurs.

Optimistic enforcement is not preventative. It requires the specification of mechanisms to detect and report or correct
non-compliance. Optimistic enforcement is specified when trust is high and the potential damage due to non-compliance
is low, and when viable preventative mechanisms do not exist.

7.10 Accountability rules

An enterprise specification identifies those actions that involve accountability of a party.

Parties can have intentions and are accountable for their actions. The concepts of subclause 6.5 are used to model an
action that involves accountability of a party .

The enterprise specification identifies the actions of parties that an ODP system is prepared to participate in, respond to
or record.

7.10.1 Delegation rules

An enterprise specification identifies the actions that any enterprise object that is not a party is prepared to participate in
as an agent of a party. An enterprise specification describes the authority delegated to an enterprise object in terms of:

– the parties that have delegated authority to the system;
– the authority that each party has delegated;
– the duration and conditions of the delegation;
– provisions for additional delegation and withdrawal of delegation during the operation of the system.

By each such delegation, that enterprise object becomes an agent of the parties delegating, and the parties (collectively)
become principal of that object. A principal is responsible for the acts of an object acting as its agent.

Insofar as provided in delegation by a party, an enterprise specification may specify further delegation, by an agent to
another enterprise object.

7.10.2 Authority rules

For each authority delegated, an enterprise specification states the actions in which an agent may participate in exercising
that authority. The authority delegated may be:

– to make a commitment; this binds the principal;
– to issue a declaration; this establishes the truth of some proposition just as if the principal had made the

declaration;
– to make a prescription that establishes a rule; such a rule has the same force as if the principal had made

the prescription;
– to further delegate an authority; this causes the agent delegated to have the authority.

7.10.3 Commitment rules

An enterprise specification identifies, for every commitment, the obligation created. It identifies, for every commitment
made by an agent, the principal(s) obligated.

Establishing behaviour in an enterprise specification includes commitments by the objects participating in the
establishing behaviour. If the establishing behaviour is implicit, it includes prescriptions that apply to the objects in the
resulting liaison.

7.10.4 Declaration rules

A declaration identifies the changes that take place in the environment of an object as the result of an internal action of
that object. An enterprise specification defines the conditions required for a particular declaration to be effective.

NOTE – A declaration may not be effective (cause the change in the environment of the object) until some interaction of the
object such as, for example, a publication.

Draft ISO/IEC 15414:2002 (E)

16 Draft ITU-T Rec. X.911 (10/2001)

7.10.5 Prescription rules

An action of an enterprise object will be a prescription only when:
– that object is a party that by its nature may establish rules;
– that object is, in a previous epoch, specified to establish rules;
– that object is an agent of an object that may establish rules and is delegated authority to establish rules on

behalf of that object; or
– the specification explicitly provides for those actions of that object that will be prescriptions.

An important special case of delegation is where the authorized action is a prescription; that is, when the delegation
enables an enterprise object to make a prescription.

8 Compliance, completeness and field of application

8.1 Compliance

This document uses the term, compliance, to describe the relationship between two standards. One standard complies
with another if it makes correct use of the ideas, vocabulary or framework defined there. This implies that, if a
specification is compliant, directly or indirectly, with some other specifications, then the propositions which are true in
those specifications are also true in a conformant implementation of the specification.

The term conformance is used for the relationship between some product and the specification from which it is produced.
Conformance can be tested by inspecting the product produced to confirm the claim that its properties or behaviour are
as required by the standard.

In ODP specifications, there is a need for the specifier to declare those points at which tests are to be performed and for
the implementer to identify those points when offering the product for test. Large specifications are frequently organized
into a specification framework populated by more detailed component specifications. The framework identifies a wide
range of points at which observations can, in principle be made. These points are called reference points. The subset of
reference points where tests of an implementation are required by the more detailed specifications are called the
conformance points for that specification.

ODP systems are specified in terms of a number of viewpoints, and this gives rise to an accompanying requirement for
consistency between the different viewpoint specifications. The key to consistency is the idea of correspondences
between specifications; i.e. a statement that some terms or structures in one specification correspond to other terms and
structures in a second specification.

8.2 Completeness

Specifications can be produced as a prelude to implementation, and generally change during implementation or to
support system evolution. Specifications can also be produced to capture the properties of existing systems or
components in order to facilitate their reuse. The references to the process of specification in this clause are intended to
cover both these situations.

When a set of viewpoint specifications and correspondences is created for an ODP system, a succession of design
choices is made, gradually reducing the number of conceivable implementations that would be consistent with the
specification. This process is never absolutely complete, since there are always implementation choices and changes in
circumstances in the environment that affect the system's behaviour, but there is some point in the design process when
the specifier judges that the specification is sufficiently complete to reflect their purpose. At this point, the specification
is said to have reached the viable stage. This is the stage in the specification process where it would be possible to
produce some worthwhile implementation. This statement does not imply that the specification is, in any way, frozen.

The viable stage depends on the purpose of the specification, because there may be significant differences in the degree
of completeness expected in, for example, an accounting policy applied to a range of independent machines or to an
inter-organizational workflow. The viable stage will not be assessed to be the same for all possible applications of any
particular specification notation.

8.3 Field of application

An enterprise specification includes a statement of the field of application that specifies the properties the environment
shall have for the specification to be applicable.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 17

The field of application determines whether a specification is appropriate in a given situation, and shall be satisfied
before it makes sense to make observations of the real world and compare these with specified observable properties to
test conformance to the specification.

NOTE – The provision of an accurate statement of the field of application is particularly important if reuse of the enterprise
specification is expected. It allows the specifier who might incorporate the existing specification fragments to ask ''is this
specification for me?'' before they begin to ask ''what shall the system and its environment do?''

9 Enterprise language compliance
An enterprise specification compliant with this document shall use the concepts defined in clause 6 and those in
subclause 5.1 of ITU-T Rec. X.903 | ISO/IEC 10746-3, as well as the concepts defined in ITU-T Rec. X.902 | ISO/IEC
10746-2, subject to the rules of clause 7 and those in ITU-T Rec. X.903 | ISO/IEC 10746-3 subclause 5.2.

Concepts from other modelling languages may also be employed. Where such concepts are employed, the specification
concerned shall include or refer to definitions of each such concept, in terms of the concepts defined in clause 6, in
ITU-T Rec. X.902 | ISO/IEC 10746-2, or in clause 5.1 of ITU-T Rec. X.903 | ISO/IEC 10746-3, and explanations of the
relationships between such concepts and those defined in clause 6.

10 Conformance and reference points
This document defines the enterprise language, which provides a framework for a variety of notations to be used in
specification. As such it creates a formal system that does not itself involve conformance (any more than, say, a
programming language grammar involves conformance). However, specific notations derived from this standard will be
supported by (generally automated) tools and design processes that produce and maintain enterprise specifications for
systems, and the conformance of these tools and processes can be tested. This includes the generation of specifications
that conform to the structural or grammatical rules of the language, and the construction of systems which, in operation,
perform in a way consistent with the semantics of the language.

In general, such tools and processes manipulate not only the enterprise viewpoint specification but also manage
correspondences with other viewpoint specifications, and so wider issues of conformance to complete sets of ODP
specifications need to be considered.

NOTE – There are correspondences between each possible pair of viewpoint specifications, but the conformance issues involved
are particularly important in this document because the policies expressed in the enterprise specification are reflected in all the
other viewpoints.

In claiming conformance to an enterprise specification, the system provider shall state what observable reference points
in the system are conformance points, and how observations at these points can be interpreted to correspond to enterprise
concepts. With this information, a tester of the system is in a position to determine by observation whether the system
behaves correctly. In ODP, conformance is based on the declaration of engineering viewpoint reference points (in
clauses 5-7 of ITU-T Rec. X.903 | ISO/IEC 10746-3), and the implementer of an enterprise specification shall state
correspondences to the engineering viewpoint in order to relate observations at the engineering reference points to
enterprise concepts.

11 Consistency rules
This clause extends clause 10 of ITU-T X.903 | ISO/IEC 10746-3 by defining enterprise specification correspondences.

11.1 Viewpoint correspondences

The underlying rationale in identifying correspondences between different viewpoint specifications of the same ODP
system is that there are some entities that are represented in an enterprise viewpoint specification, which are also
represented in another viewpoint specification. The requirement for consistency between viewpoint specifications is
driven by, and only by, the fact that what is specified in one viewpoint specification about an entity needs to be
consistent with what is said about the same entity in any other viewpoint specification. This includes the consistency of
that entity's properties, structure and behaviour.

The specifications produced from different ODP viewpoints are each complete statements in their respective viewpoint
languages, using their own locally significant names, and so cannot be related without additional information in the form
of correspondence statements. What is needed is a set of statements that make clear how constraints from different
viewpoints apply to particular elements of a single system to determine its overall behaviour. The correspondence
statements are statements that relate the viewpoint specifications, but do not form part of any one viewpoint
specification. The correspondences can be established in two ways:

Draft ISO/IEC 15414:2002 (E)

18 Draft ITU-T Rec. X.911 (10/2001)

– by declaring correspondences between terms in two different viewpoint languages, stating how their
meanings relate. This implies that the two languages are expressed in such a way that they have a
common, or at least a related, set of foundation concepts and structuring rules. Such correspondences
between languages necessarily entail correspondences relating to all things of interest which the languages
are used to model (e.g. things modelled by objects or actions);

– by considering the extension of terms in each language, and asserting that particular entities being
modelled in the two specifications are in fact the same entity. This relates the specifications by identifying
which observations need to be interpretable in both specifications.

There are two kinds of standardization requirements relating to correspondences:
– Some correspondences are required in all ODP specifications; these are called required correspondences.

If the correspondence is not valid in all instances in which the concepts related occur, the specification is
not a valid ODP specification.

– In other cases, there is a requirement that the specifier provides a list of items in two specifications that
correspond, but the content of this list is the result of a design choice; these are called required
correspondence statements.

The minimum requirement for consistency in a set of specifications for an ODP system is that they exhibit the
correspondences defined in the Reference Model [3-10], those defined in this clause 11, and those defined within the
specification itself.

NOTE – An enterprise specification may include objects that are not part of the ODP system being specified and may include the
behaviour of such objects. Where this is the case, there may be no instances of concepts in other viewpoints that correspond to
these objects or their behaviour.

11.2 Enterprise and information specification correspondences

11.2.1 Concepts related by correspondences

The enterprise concepts related are:
– community;
– enterprise object;
– enterprise action;
– role;
– policy.

The information concepts related are:
– information object;
– dynamic schema;
– static schema;
– invariant schema.

11.2.2 Required correspondences

There are no required correspondences.

11.2.3 Required correspondence statements

The specifier shall provide:
– for each enterprise object in the enterprise specification, a list of those information objects (if any) that

represent information or information processing concerning the entity represented by that enterprise
object;

– for each role in each community in the enterprise specification, a list of those information object types (if
any) that that specify information or information processing of an enterprise object fulfilling that role;

– for each policy in the enterprise specification, a list of the invariant, static and dynamic schemata of
information objects (if any) that correspond to the enterprise objects to which that policy applies; an
information object is included if it corresponds to the enterprise community that is subject to that policy;

– for each action in the enterprise specification, the information objects (if any) subject to a dynamic
schema constraining that action;

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 19

– for each relationship between enterprise objects, the invariant schema (if any) which constrains objects in
that relationship.

– for each relationship between enterprise roles, the invariant schema (if any) which constrains objects
fulfilling roles in that relationship.

11.3 Enterprise and computational specification correspondences

11.3.1 Concepts related by correspondences

The enterprise concepts related are:
– enterprise object;
– role;
– enterprise interaction;
– policy.

The computational concepts related are:
– computational object;
– computational behaviour;
– computational binding object;
– computational interface;
– operation;
– stream.

11.3.2 Required correspondences

There are no required correspondences.

11.3.3 Required correspondence statements

The specifier shall provide:
– for each enterprise object in the enterprise specification, that configuration of computational objects (if

any) that realizes the required behaviour;
– for each interaction in the enterprise specification, a list of those computational interfaces and operations

or streams (if any) that correspond to the enterprise interaction, together with a statement of whether this
correspondence applies to all occurrences of the interaction, or is qualified by a predicate;

– for each role affected by a policy in the enterprise specification, a list of the computational object types
(if any) that exhibit choices in the computational behaviour that are modified by the policy;

– for each interaction between roles in the enterprise specification, a list of computational binding object
types (if any) that are constrained by the enterprise interaction;

– for each enterprise interaction type, a list of computational behaviour types (if any) of computational
behaviors capable of carrying out an interaction of that enterprise interaction type.

11.4 Enterprise and engineering specification correspondences

11.4.1 Concepts related by correspondences

The enterprise concepts related are:
– behaviour;
– enterprise object;
– interaction;
– policy;
– role.

The engineering concepts related are:
– binder;
– capsule;

Draft ISO/IEC 15414:2002 (E)

20 Draft ITU-T Rec. X.911 (10/2001)

– channel;
– cluster;
– interceptor;
– node;
– nucleus;
– protocol object;
– stub.

11.4.2 Required correspondences

There are no required correspondences.

11.4.3 Required correspondence statements

The specifier shall provide:
– for each enterprise object in the enterprise specification, the set of those engineering nodes (if any) with

their nuclei, capsules, and clusters, all of which support some or all of its behaviour;
– for each interaction between roles in the enterprise specification, a list of engineering channel types and

stubs, binders, protocol objects and interceptors (if any) that are constrained by the enterprise interaction.
NOTE 1 – The engineering nodes may result from rules about assigning support for the behaviour of enterprise objects to nodes.
These rules may capture policies from the enterprise specification.
NOTE 2 – The engineering channel types and stubs, binders or protocol objects may be constrained by enterprise policies.

11.5 Enterprise and technology specification correspondence

In accordance with clause 15.5 of ITU-T Rec. X.902 | ISO/IEC 10746-2 and clause 5.3 of ITU-T Rec. X.903 | ISO/IEC
10746-3, an implementer provides, as part of the claim of conformance, the chain of interpretations that permits
observation at conformance points to be interpreted in terms of enterprise concepts. While there may be specific
correspondences between enterprise policies and technology viewpoint specifications that require the use of particular
technologies, there are neither required correspondences nor required correspondence statements.

NOTE – Although there are no required viewpoint correspondences between enterprise viewpoint and technology viewpoint
specifications, there may be cases where part of enterprise viewpoint specification has a direct relationship with a technology
viewpoint specification or a choice of technology. Such examples include enterprise policy covering performance (e.g. response
time), reliability, and security.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 21

Annex A Model of the enterprise language concepts
This annex is not normative. It presents an illustrative model of the main concepts from the enterprise language and the
relationships between those concepts. The selection of elements in this model, which is expressed in the diagrams below,
is chosen to give a basic overview of the main features of the language, even though this results in some redundancy of
expression from a formal modelling point of view. In the interests of simplicity, the rich web of relationships with all the
supporting concepts from RM-ODP Part 2 has also been left out of the diagrams. In particular, relations with the
concepts of type and template are not specifically illustrated.

Note 1 – The notation used in this model is UML [ISO/IEC IS 19501, Information Technology – Unified Modelling Language
(UML)].
Note 2 – The convention for expressing an association is such that it can be read as: “Each (or an instance of) <Class X> <verb
phrase> <cardinality> <Class Y>”, where the verb phrase expresses the role played by an <X> in its relationship with a <Y>, and
is placed, as a RoleEndName at the <X> end of the association (in accordance with the UML notation rule given in clause 3.43.2
of ISO/IEC DIS 19501). For example, in Figure A.1 the association that an ODP System has with Scope can be read as “Each
ODP system has (the) expected behaviour defined in exactly one Scope”. The choice of “each” or “an instance of” will depend on
the cardinalities of the association.

The diagrams representing this illustrative model are presented below under four broad headings as found in clause 6 of
this document, viz:

– System concepts – representing the relationships between an enterprise specification and the system that it
describes;

– Community and Behaviour concepts – representing relationships between the main enterprise language
concepts used in modelling the behaviour of a community;

– Policy concepts;
– Accountability concepts.

ODP System

Field of Application Enterprise Specification

Scope

Enterprise Object

Objective

described by

has

0..11..*

met by behaviour of

has

describes usability properties of 1..*

1
describes 1

1

has expected behaviour

is expected behaviour of1

1
ODP System

Field of Application Enterprise Specification

Scope

Enterprise Object

Objective

described by

has

0..11..*

met by behaviour of

has

describes usability properties of 1..*

1
describes 1

1

has expected behaviour

is expected behaviour of1

1

Figure A.1 System Concepts

Draft ISO/IEC 15414:2002 (E)

22 Draft ITU-T Rec. X.911 (10/2001)

Interface Role 1..*
performed by

ActionCommunity Object BehaviourEnterprise Object

Community

Artefact

Contract Objective

Step

ProcessPolicy

1..* *

is actor for

Role

refers to
is artefact foris resource for

*

Resource

*

requires
1..*

1..**

participates in 1..*

Actor

is essential to

is referenced in

is fulfilled by

specified in

1..*

*

specifies1

specifies

1specifies

1

0..1refined as

refines 1

1

specifies

is a configuration of

is a member of

*

specified in

has

fulfils
*

*

1

1..*

meets

refines as sub-objective

is graph of
is met by1..*

specified in

1

*

0..1

refines0..1
refined as sub-objectives by

1..* met by *meets

1..*

identified by

identifies

specified by

0..1

1..*is specified in

1
*

*

refined as

1..*

abstraction of

abstracted as

1..*

0..1

1

0..1

is in context of

is part of

is a set of

1..*

Interface Role 1..*
performed by

ActionCommunity Object BehaviourEnterprise Object

Community

Artefact

Contract Objective

Step

ProcessPolicy

1..* *

is actor for

Role

refers to
is artefact foris resource for

*

Resource

*

requires
1..*

1..**

participates in 1..*

Actor

is essential to

is referenced in

is fulfilled by

specified in

1..*

*

specifies1

specifies

1specifies

1

0..1refined as

refines 1

1

specifies

is a configuration of

is a member of

*

specified in

has

fulfils
*

*

1

1..*

meets

refines as sub-objective

is graph of
is met by1..*

specified in

1

*

0..1

refines0..1
refined as sub-objectives by

1..* met by *meets

1..*

identified by

identifies

specified by

0..1

1..*is specified in

1
*

*

refined as

1..*

abstraction of

abstracted as

1..*

0..1

1

0..1

is in context of

is part of

is a set of

1..*

Figure A.2 Community and Behaviour Concepts

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 23

Policy

Authorisation Permission ProhibitionObligation

Violation

Behaviour

Enterprise Object

Role

Assignment Policy

Contract

Process

Rule

is subject to *

governs

1

is subject to1..*

Community

is subject to

is subject to
*

1

constrained by
*

prohibits1

*constrained by*constrained by changes*

is a1

1..*specifies
*

*

applies to

constrains

*
constrainsapplies to

specified in

*

*

*constrains

1

*

set of

member

changed by

is contrary to *

is a 0..1

expresses expresses
0..10..1

1 1

0..1
expresses

1

expressed as

expressed as
expressed as

1expressed as

expresses
0..1

Policy

Authorisation Permission ProhibitionObligation

Violation

Behaviour

Enterprise Object

Role

Assignment Policy

Contract

Process

Rule

is subject to *

governs

1

is subject to1..*

Community

is subject to

is subject to
*

1

constrained by
*

prohibits1

*constrained by*constrained by changes*

is a1

1..*specifies
*

*

applies to

constrains

*
constrainsapplies to

specified in

*

*

*constrains

1

*

set of

member

changed by

is contrary to *

is a 0..1

expresses expresses
0..10..1

1 1

0..1
expresses

1

expressed as

expressed as
expressed as

1expressed as

expresses
0..1

Figure A.3 Accountability Concepts

Action

Commitment Declaration DelegationEvaluationPrescription

Party

Enterprise Object

Accountable Action

is action1

is principal

1

is agent1

accountably involved in

involves accountability of 1..*

*

Action

Commitment Declaration DelegationEvaluationPrescription

Party

Enterprise Object

Accountable Action

is action1

is principal

1

is agent1

accountably involved in

involves accountability of 1..*

*

Figure A.4 Policy Concepts

Draft ISO/IEC 15414:2002 (E)

24 Draft ITU-T Rec. X.911 (10/2001)

Annex B Explanations and examples
This annex explains the concepts and structuring rules of the enterprise language and provides examples of how they
may be used. This annex is not normative.

Each of the two parts of this annex includes a running example. The two examples illustrate (somewhat different) uses of
the concepts and structuring rules to specify an ODP system from the enterprise viewpoint. [3-4.1.1.1]

The concepts explained are:
– Enterprise specification concepts including the specification itself, the field of application of the

specification, the system, and its scope;
– Community concepts including, community, enterprise object, objective, and contract of the community;
– Behaviour concepts including action, behaviour, role, process and step, and interface role;
– Policy concepts including rule, policy, authorization, obligation, permission, prohibition, and violation;
– Accountability concepts including accountability, party, commitment, declaration, delegation and authority,

agent and principal, evaluation, and prescription;
– More about communities, including lifecycle of a community, assignment policy, relationship between

communities, domains, and federation.

In this annex, terms that refer to concepts that belong to the specification language, the RM-ODP enterprise language,
are in italic, terms that refer to concepts that belong to universe of discourse (that is, what is being specified) [2-6], are in
the usual roman typeface, and names used in an ODP specification are in sans serif roman. In some cases, a term,
which refers to a concept that belongs to the enterprise language, is also occasionally used in this annex with its ordinary
sense. When such a term is used in its ordinary sense, it is in the usual roman typeface, not in italic.

An ODP specification comprises one or more viewpoint specifications of an ODP system and its environment. An
enterprise viewpoint specification is expressed in the enterprise language. [3-4] The enterprise language uses concepts
taken from ITU-T Rec. X.902 | ISO/IEC 10746-2, and introduces refinements of those concepts, prescriptive rules and
additional concepts defined using concepts from ITU-T Rec. X.902 | ISO/IEC 10746-2. [3-4.2.2] The additional concepts
are those of clause 5 of ITU-T Rec. X.903 | ISO/IEC 10746-3 and those in this document.

B.1 First Example – Specification of an e-commerce system

This running example illustrates the use of the concepts and structuring rules to specify an ODP system from the
enterprise viewpoint. [3-4.1.1.1]

Example — Our example is a specification of an e-commerce system operated by e.com, a seller of widgets. This specification is
made from the enterprise viewpoint.

B.1.1 Enterprise Specification

B.1.1.1 Specification [3-4.2.2]

An enterprise specification of an ODP system focuses on the purpose and scope of that system and the policies for that
system. That enterprise specification includes enterprise objects and actions of those objects.

An enterprise object is a model of, and represents, something (an entity [2-6.1]) in the world of the ODP system being
specified. This may be, for example, a person or organization as well as a computer system and the software it supports.

An action of an enterprise object is a model of something that happens in the world of the ODP system being specified;
the entity represented by that object participates in what happens. This may be, for example, something done by a person
or by a computer system or one of its parts. Several objects may participate in the same action.

Example – A person places an order for a purple widget with the e.com e-commerce system. That person and the e.com
e-commerce system are represented in our specification as objects. Placing that order for a purple widget is represented as an
action. Those objects participate in that action.
An action may be a composition. Several objects participate in the action fulfilling the order for a purple widget. Each of those
objects participates in some of the actions in a decomposition of that action.

B.1.1.2 Field of application (of a specification) [6.1.2]

To enable reuse, an enterprise specification will include the properties the environment of the ODP system shall have in
order for that specification to be suitable for use in that environment.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 25

Example – The e-commerce system specification belongs to the domains of trade and electronic business transactions, and
therefore assumes the set of structures and roles common to these domains, such as buyer, seller, order, delivery, item, etc., as well
as button, browser, client, server, electronic payments, etc. Moreover, the specification also assumes certain ways of doing
business, and several kinds of valid operations only. Thus, the e-commerce system specification can only be applied within the
domains of trade and electronic business transactions, i.e., it may not make any sense to use this specification in other
environments where the aforementioned assumptions are not valid. Examples of such invalid environments include the cases of
barter-based trading communities, or systems without computerized resources or with no access to electronic services (such as
e-orders, e-payments, etc.).

B.1.1.3 System [2-6.5]

A system is something that is of interest both as a whole and as composed of parts. Some of the parts of a system may
themselves be systems; these may be called subsystems.

Example – The e-commerce system, represented by an object, e-system, includes a purchasing subsystem, a shipping subsystem,
and an administration subsystem. These are represented in the specification by three systems, purchasingSubsystem,
shippingSubsystem, and administrationSubsystem

An ODP system may be an automatic information processing systems, or may be any other kind of system, in the general
sense. Often the ODP system will include some parts which are computers, others which are other kinds of machinery,
and parts in which people play a part.

Example — The e.com e-commerce system comprises a part that is a computer and parts that are e.com employees. The computer
part handles most orders automatically, but refers some for decision-making by the e.com employees.

B.1.1.4 Scope [6.1.1]

An enterprise specification states the scope of the ODP system. The scope specifies what the system does, while
suppressing details of how that is done. In any community in which the ODP system is represented as a single object,
that object fulfils certain roles in that community; the behaviour identified by the roles fulfilled by that object is the
scope of the ODP system for that community.

Example – The scope of e-system in our e-commerceCommunity includes providing a list of available kinds of widgets and the
price of each, providing representations about the merchantability and fitness for use of each kind of widget, accepting orders and
payments, keeping track of inventory, and so on.

B.1.2 Community

B.1.2.1 Community [3-5.1.1]

A community is a configuration of objects formed to meet an objective. That objective is expressed in a contract that
specifies how the objective can be met. The interactions of objects fulfilling the roles of that community serve the
objective of the community.

The contract of the community includes policies. These policies prescribe the behaviour of the objects of the community
in situations when there are choices in behaviour. The same type of community can be used in different situations by
setting policies suitable for the particular situation.

An enterprise specification may specify some or all of the objects of a community, or may specify or refer to supportive
mechanisms that introduce objects into a community at the creation or introduction of that community or at other times
during its lifetime. The contract of the community may provide for adding or removing objects, roles, or policies of the
community.

In an enterprise specification, at some level of description, the ODP system is represented as an enterprise object in a
community. That object may be called the ODP system object or, simply, the system. The other objects in that
community are the environment of that system.

Example – In our example, the e.com e-commerce system interacts with people and with other automated systems. When the
operation of that e-commerce system is specified from the enterprise viewpoint, that system and the context in which it operates
are represented as a community. We will call this, e-commerceCommunity.
In the enterprise viewpoint specification of the ODP system, the e.com e-commerce system is represented as an object in
e-commerceCommunity. That object, the e-commerce system object, we call e-system.
People and automated systems are also represented as objects in e-commerceCommunity.

The parts of the ODP system will be specified; these are also represented as objects. In some cases these parts will be
under separate control or have different owners.

The e-commerce system is composed of parts. To show the interactions of the parts, our specification also shows
e-commerceCommunity in more detail, with the e-commerce system shown as several objects representing parts of the
e-commerce system.

The enterprise specification may include other communities. The objects of these communities will be both the parts of
e-system and objects in the environment of e-system

Draft ISO/IEC 15414:2002 (E)

26 Draft ITU-T Rec. X.911 (10/2001)

In our specification there are also other communities that include e-system or some of its parts. Each of these communities has its
own objective. We will see examples later in this annex.

B.1.2.2 Enterprise object [3-4.2.2]

ODP systems are modelled in terms of objects. An object is a model of an entity. Enterprise objects model the entities
defined in an enterprise specification. [7.4]

B.1.2.3 Objective [6.2.1]

The objective of a community specifies the practical advantage or intended effect of the formation of that community,
captured as preferences about future states of the objects of that community.

Example – People, firms, and automated systems interact with our example system in order to exchange goods and money. The
objective of the e-commerceCommunity is to enable this exchange. (This objective may, of course, be specified in more detail.)
This is captured in our enterprise specification as a preference that, in the future, goods will have been exchanged and everyone
will be satisfied with the exchanges.
NOTE - The words ‘objective’ and ‘purpose’ are synonyms. The enterprise language gives a specific meaning to ‘objective,’
prescribes how an objective is to be specified, and uses that concept throughout.

B.1.2.4 Contract [2-11.2.1]

The contract of the community specifies how the objective of the community can be met. That contract governs the
collective behaviour of the community. The contract includes policies (sets of rules related to a particular purpose) that
prescribe what the objects of the community may and may not do.

Example – The contract of our e-commerceCommunity include policies about privacy of customers, representations about the
goods, placing of orders, means of payment, procedures in case of dissatisfaction and so on. The policies about means of payment
will prescribe what methods of payment are permitted, how information about a method of payment will be transmitted, and the
like.
This contract of the community also refers to a legal agreement between e.com and its customers. Some of the provisions of that
agreement are represented in our specification as a policy (a set of rules for the purpose of ensuring that the e-commerce system
complies with that legal agreement).

Essential aspects of a contract of a community are:

-- the behaviour identified by the roles of the community;

-- policies governing the behaviour of objects of the community;

-- policies for changing the community (its roles, policies, and so on); and

-- rules for deciding when there is a violation of the contract of the community and what actions are then taken.

B.1.3 Behaviour

B.1.3.1 Action [2-8.3]

An action in an enterprise specification represents something that happens in the system or its environment. An
interaction takes place with the participation of more than one object.

Example – Actions in the e-commerceCommunity include internal actions of e-system, such as changing an inventory record
and comparing the count of an item in inventory to the reorder limit for that item, and interactions between e-system and objects
in its environment, such as requesting a price, adding a line item to an order, and requesting a payment.

B.1.3.2 Behaviour [2-8.6]

The behaviour of an ODP system is determined by the collection of all the possible actions in which the system (acting
as an object), or any of its constituent objects, might take part, together with a set of constraints on when these actions
can occur. In the enterprise language this is can be expressed in terms of roles or processes or both, policies, and the
relationships of between these.

Example – Behaviours of the e-commerceCommunity include placing an order, shipping a widget, and collecting a payment;
these all involve several interactions between e-system and objects in the environment. Internal behaviours include keeping track
of inventory and making decisions about replenishing inventory.

B.1.3.3 Role [2-9.14]

A role provides the means to refer to a behaviour, without specifying the object that is associated with that behaviour.
When the behaviour identified by a role is associated with a particular object, we say the object fulfils that role.

Thus a specification may state the behaviour of a system in terms of roles. Roles are used in the specification of a
community to identify the behaviour of the objects of the community.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 27

Example – The roles of our e-commerceCommunity include roles for objects representing the e-commerce system, customers,
widget suppliers, supplier systems, and e.com managers which are enterprise objects in the e-commerceCommunity. The roles
of e-system in our e-commerceCommunity include catalogueServer and orderTaker. Our specification states that the role,
catalogueServer, includes displaying a welcome page, displaying catalogue pages, searching for kinds of widgets that meet a
need described by a customer, and so on. This is one of the roles of e-system in our e-commerceCommunity.

A community specification may include policies for assigning objects to roles, which are called assignment policies (see
B.1.6.2).

An object may fulfil several roles in the same community. On the other hand, the contract of the community may, for
example, prohibit the same object from fulfilling both of two particular roles.

Example – Our specification includes the roles, customer and e.comManager. Because e.com is pleased to have its employees
as customers, the same object, representing a manager of e.com, may fulfil both roles, customer and e.comManager.
Our specification also includes the role, auditor. As a matter of company policy, employees acting as auditors are not allowed to
use the system as customers. So, our specification states that an object fulfilling the role, auditor, may not fulfil the role,
customer.

In an enterprise specification the term, ‘<x> object’, where ‘<x>’ is a role, is interpreted as meaning: an enterprise
object fulfilling the role, <x>.

Example – ‘customer object’ means an object fulfilling the role, customer.

B.1.3.4 Interface Role [6.3.4 and 7.8.3]

An interface role identifies the behaviour of an object of a community that is responsible for an interaction of that
community with objects that do not belong to that community.

Example – In the specification, e-system is a composite object. Some of the components of e-system fulfil roles in the
inventoryMaintenance community. This community interacts with supplierSystem objects (objects fulfilling the role,
supplierSystem) outside the inventoryMaintenance community. The inventoryMaintenance community includes interface
roles. The objects of this community that interact with supplierSystem objects fulfil interface roles.

B.1.3.5 Process [6.3.5]

A process is composed of steps. A step is an action that may leave unspecified the objects that participate in that action.

Each step in a process is associated with a role or roles. Together, objects fulfilling the roles of a process participate in
all the steps of that process.

Example – The specification of the inventoryMaintenance community includes the specification of a reorderProcess. This
process includes the objects, orderPlacer, receiver and inventoryKeeper and the role, supplier. One step in this process is the
action in which the orderPlacer places an order. The process of placing an order proceeds in the same way for any
supplierSystem fulfilling the role, supplier.

Part 2 of the Reference Model provides concepts for use in specifying an activity. These concepts may also be used to
specify the structure of a process. [2-13.1]

Example – For handling goods as they are received, the specification of the inventoryMaintenance community includes the
specification of a receivingProcess. This process includes a forking action. Following the fork, in one chain the
inventoryKeeper adjusts the inventory; in the other chain, the orderPlacer adjusts outstanding orders. The steps of these two
chains are followed by joining action; this is followed by steps completing the receivingProcess.

B.1.3.6 Enterprise objects and actions [7.8.4]

An enterprise object, when fulfilling a role, can be involved in an action in different ways: as an actor (if it participates
in the action), as an artefact (if it is referenced in the action), or as a resource (if it is essential to the action and may
become unavailable or used up).

Example – In the action of customer buying a purple widget, e-system object and the customer object are actors, the object
representing a purple widget is an artefact, and shippingSubsystem is both an actor and a resource (represented in the action by
a community object (a composition of the parts of that subsystem), which will be in charge of delivering the product at a later
stage.)

B.1.4 Policy

B.1.4.1 Policy [2-11.2.7, 6.4]

A policy is a set of rules related to a particular purpose; a rule may be expressed as an authorization, an obligation, a
permission, or a prohibition.

An enterprise specification may include policies, and may specify that policies (and rules) can be prescribed during the
operation of the ODP system.

A policy may specify which of some collection of policies is to be applied in certain circumstances.

Draft ISO/IEC 15414:2002 (E)

28 Draft ITU-T Rec. X.911 (10/2001)

An enterprise specification may include a mechanism enabling change, from time to time, which policy of some
collection of policies is to be applied in certain circumstances, or a mechanism for determining which policy to use in
different cases of a similar situation.

Example – The specification of the e-commerce system provides for that system to follow two policies governing backorders. One
policy is used with favoured suppliers and includes a rule that allows items on an order to be backordered by a supplier. This
policy includes other rules governing the handling of backorders. The alternate policy is used with all other suppliers and includes
a rule prohibiting backorders: if the supplier cannot fill the entire order, the order is cancelled.

B.1.4.2 Authorization [6.4.2. 7.9.2.4]

An authorization is a rule that a particular behaviour shall not be prevented. An authorization is fulfilled so long as the
authorized behaviour is not prevented. Prevention of that behaviour is a violation.

Example – The enterprise specification of the e-commerce system includes a rule, which prescribes that an auditor object (that is,
a party fulfilling the role, auditor) is authorized to examine any record in the system. Another rule prescribes that a
databaseAdministrator object is authorized to display records when testing the operation of the dataManagementSubsystem.

B.1.4.3 Obligation [2-11.2.4]

An obligation is a rule that a particular behaviour is required. An obligation is fulfilled by the occurrence of the
prescribed behaviour. If that behaviour does not occur as prescribed, then there is a violation. Some obligations are
continuing: the behaviour is required to be ongoing.

Example – The enterprise specification includes a rule which prescribes, for any order accepted before 4 PM, to schedule
shipment on the same day of all ordered widgets in stock and not already scheduled for shipment at the time of acceptance of that
order. This rule is represented as an obligation of the shippingSubsystem.

B.1.4.4 Permission [2-11.2.5]

A permission is a rule that a particular behaviour is allowed to occur.
Example – The enterprise specification includes rules that certain subsystems may establish communication with objects outside
the e.com security domain. These rules are permissions.

A permission for a behaviour is equivalent to there being no prohibition of that behaviour. Thus, a rule that applies to
one object, that participation in a particular type of interaction is allowed, is not inconsistent with a rule that applies to
another object, that an interaction of that type shall not occur. The latter rules out interactions of that type between those
two objects, but the first object may participate in interactions of that type with some third object.

Example – The enterprise specification provides that objects in the role, orderPlacer, have permission to establish
communication with objects outside the e.com security domain. An orderPlacer object attempts communication with an object
representing a particular supplier system. securitySubsystem prevents that communication because of a temporary specific
prohibition on communication with that supplierSystem object, which currently appears to be a zombie in a denial of service
attack on e.com. This is not a violation of the permission of that orderPlacer object.

B.1.4.5 Prohibition [2-11.2.6]

A prohibition is a prescription that a particular behaviour shall not occur. A prohibition is equivalent to there being an
obligation for the behaviour not to occur. Occurrence of that behaviour is a violation.

Example – The enterprise specification of the e-commerce system includes a rule, which prescribes that a salary record may be
displayed only for a salary administrator, an auditor, or a manager of that employee. This rule is specified using the roles,
salaryAdministrator, auditor, manager, and employee, the record type, salaryRecord, and the action type, recordDisplay.
Another rule prescribes that no subsystem may establish communication with a system outside the e-com administrative domain
without a permission included in that specification or granted by securitySubsystem. Any such communication in the absence of
a permission is a violation.

B.1.4.6 Violation [6.4.3 and 7.9.3]

A violation is an behaviour contrary to a rule. A violation of a rule that is part of a contract is a failure. [2-13.5.1]
Example – An action of securitySubsystem, which prevents an auditor object from examining a certain record, is a violation
the rule, mentioned above, that a party in the role of auditor is authorized to examine any record in the e-commerce system. An
action by a program executed by a databaseAdministrator object, which displays an employee salary, is a violation of the rule,
mentioned above, that prohibits display of a salary record except for objects fulfilling certain roles.

An enterprise specification may include a rule prescribing certain types of actions to be taken by an object in the event
of certain types of violations. That rule is an obligation, which applies to that object. Failure to take the prescribed
actions is an inaction, and a violation of that rule.

Example – When an order is accepted before 4 PM, but ordered widgets, which are in stock and not already scheduled for
shipment at the time of acceptance of that order, are not scheduled for shipment the same day, this behaviour by the
shippingSubsystem is a violation of the rule, mentioned above, that obliges shippingSubsystem to schedule such shipments on
the same day.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 29

B.1.5 Accountability

B.1.5.1 Accountability [6.5 and 7.10]

An action of an object is a model of something that happens in the world of the ODP system. Things that happen include
things done by people and organizations and by computer systems. They include things that happen with the
participation of more than one person, organization, or computer system. In most cases people and organizations may be
held accountable for what they do. The owner or operator of a computer system should be held accountable for what that
system does. This document provides concepts for the specification of accountability for actions. [6.4]

To say an organisation does something is to use a convenient shorthand which means that some person or persons or
some automated system does something, and that this is regarded for certain purposes as having been done by the
organisation. Accountability concepts of the enterprise language allow for the specification to provide for the
determination of the persons or organizations to be held accountable for certain actions. This is represented in that
specification as accountability of the objects representing those persons or organizations.

Example — If a customer makes a purchase from an e-commerce system, this is represented in the enterprise specification as an
action of the object representing that customer.
If the purchasing agent of e.com makes a purchase (in her capacity as purchasing agent), this may be represented as an action of
the object representing e.com, an action of the object representing the person (the purchasing agent), or both. The choice depends
on the purposes of the specifier or owner of the system.

If a person or organization causes a computer system to do something on its behalf, then the person or organization is
accountable for what that system does. When the computer system does something, that has the same force as if the
person or organization that caused the computer system to be in operation or allowed it to continue in operation had done
that thing. For this reason, an action in an enterprise specification that represents something done by a computer system
acting for a person may be an action for which that person is accountable. This is represented by a specification that the
object representing that person is accountable.

Example — If a firm’s computer system sends an order to the e-commerce system (and has been delegated authority to do so) this
is represented as an action for which the object representing that firm is accountable.

This document provides rules for the specification of an ODP system in terms of the accountability for something which
that system does. When the ODP system is acting on behalf of a person or organization, accountability for any thing the
system does is determined by delegation by that person or organization to the system. This is represented in the
specification by a delegation by an object representing that person or organization to the object representing that system.

B.1.5.2 Party [6.5.1 and 7.10.4]

An ODP system operates in a world that includes computer systems (that is, computers and the software they execute)
and other automated systems. That world also includes natural persons, groups of natural persons and other entities
considered to have some of the rights, powers and duties of a natural person (for example, corporations, governments,
and other organizations). Parties are models of these entities. In some cases, these persons or other entities may cause
that ODP system to do something on their behalf. The enterprise language provides concepts and structuring rules for
specifying the effect in the world when this happens.

Examples — The objects representing people and the objects representing e.com and other firms are parties.

B.1.5.3 Commitment [6.5.2 and 7.10]

An action may result in an obligation by one or more of the participants in that action to comply with a rule or perform a
contract. Such an action is a commitment. In an enterprise specification the enterprise object(s) participating in a
commitment may be parties or agents acting on behalf of a party or parties. In the case of an action of commitment by an
agent, the principal becomes obligated. (See B1.5.5 and B.1.5.6 below.)

Example — A firm may operate a computer system which sends an order to the e-commerce system The sending of the order by
that computer system commits that firm to pay for the goods when timely delivered. (For example, e.com may have a contract
with that firm which provides that, or this may the result of the operation of commercial law.) The sending of that order is
represented as a commitment.

B.1.5.4 Declaration [6.5.3and 7.10]

Sometimes, when some person says something, the very fact of saying that causes a change in the world. The act of
making such a statement may be represented as a declaration. The essence of a declaration is that, by virtue of the
action of declaration itself and the authority of the object or its principal, it causes a state of affairs to come into
existence outside the object making the declaration. An ODP system may be delegated by a party to participate in some
action that is a declaration.

Draft ISO/IEC 15414:2002 (E)

30 Draft ITU-T Rec. X.911 (10/2001)

Example – e.com has agreements with its customers, which provide that, when an order is cancelled within twenty-four hours of
the scheduled shipping data, e.com has the option to make a restocking charge of 5% of the invoice amount for the cancelled
order. The e-commerce system is programmed to automatically make that charge in the case of a customer that has accounts
receivable by e.com which are more than sixty days late in payment. The cancellation of an order by a firm, F, is represented in
the specification as an action, cancel, by an object, firmF, referring to another object, order. An action of e-system invoking the
restocking charge when an order is cancelled by firmF is a declaration. That action establishes a state of affairs in the
environment of e-system: firm F is obliged to pay that charge to e.com.

B.1.5.5 Delegation and Authority [6.5.4 and 7.10.1, 7.10.2]

In an enterprise specification of an ODP system, that system is represented as an object. The specification describes the
authority delegated to that object.

Example – The specification provides that e-system may be delegated the authority to cancel a contract with a supplier or
customer of e.com (subject to the terms of that contract). Sending a message to the counterparty cancelling a contract is
represented as a declaration: the communication of that message causes the contract to be cancelled. This will be the case, for
example, when the e-commerce system automatically cancels an order.

Subclauses 7.10.1 and 7.10.2 prescribe rules for specification of delegation and authority

B.1.5.6 Agent and Principal [6.5.7, 6.5.8, and 7.10]

By each delegation, that system becomes an agent of the party delegating, and the party becomes a principal of the
system.

Examples:
1 – In our enterprise specification, e.com is represented as an object, e.com. The person acting as chief financial officer (CFO) of
e.com causes the e-commerce system to serve offered prices to the computer systems of customers (including web browsers and
purchasing systems), which prices are determined by the CFO and entered into the e-commerce system.
This setting of offered prices is represented as an action of the party, CFO, representing the CFO. The CFO may delegate to the
e-commerce system the authority to set prices during evenings and weekends. The CFO may also delegate authority to that
system to further delegate this authority to an independent but federated pricing service in certain cases. e-system is the agent of
CFO and CFO is the principal of e-system. If delegated by e-system pursuant to that authority, pricingServiceP (representing
a federated pricing service) becomes the agent of CFO and the CFO is the principal of pricingServiceP.
In a different enterprise specification, it may instead be e.com that delegates to e-system the authority to set prices during
evenings and weekends. e.com may also delegate authority to the e-system to further delegate this authority to
pricingServiceP. e-system is the agent of e.com and e.com is the principal of e-system. If that authority is delegated by e-
system to pricingServiceP, then pricingServiceP is the agent of e.com and e.com is the principal of pricingServiceP.
2- Another ODP system provides an e-commerce service, which an application service provider offers to many firms. Each firm
using that system is represented in the specification of that system by an object in the role, firm.
The enterprise specification of that e-commerce service provides a means for firm to delegate the authority to set prices. If e.com
uses that service, during the operation of that system, the object, e.com, fulfilling the role, firm, may delegate the authority to set
prices to its pricingManager (a role for an object representing the person in the firm with authority to set prices). In the matter of
setting prices, pricingManager is the agent of e.com.

Actions of the object representing an ODP system that are an exercise of delegated authority are actions that result in
accountability. These actions represent something the ODP system does, which causes a state of affairs in that part of
the universe of discourse represented by the parties in the environment of that object. The accountability concepts [6.5]
are used to specify which kinds of states of affairs the thing represented by the action causes.

Example — If pricingService changes an offeringPrice, this action is a model of something that happens in the world of
e-commerce. What happens is that there is a new state of affairs: e.com is now offering to sell at the changed price.
In a fully automatic e-commerce system, the enterprise specification will provide that the posting of a changed price object by an
agent of e.com (for example, the pricingService) constitutes an offer by e.com to sell at the price indicated by that price. In that
case, the effect of the action by the pricingService to change that price is this: e.com has made an offer and is committed to sell
at the price indicated by price to any customer accepting the offer before it is withdrawn. (This is the representation in the
specification of the situation in the world, and exactly represents that situation: The effect of the posting by the federated pricing
service of the changed price is this: e.com has made an offer and is committed to sell at the price indicated by the posted price to
any customer accepting the offer before it is withdrawn.)
This offer (the posting of the changed price object) is an action of an agent of e.com, for which e.com is accountable. In this
case the action is a commitment, as e.com is obligated to sell at that price if the offer is accepted.
Since the e-commerce system is a fully automatic system operating over the internet, an acceptance of an offer to sell will be
transmitted to the e-commerce system by software connected to the internet, perhaps a web browser. In an enterprise specification
that includes customers and their systems, a webBrowser is the agent of an object in the role, customer and acts for the
customer (the web browser acts for the customer by sending the order message when the customer clicks the Buy button).

The parts of an ODP system may be specified in this same way.
Example — Within the pricingService, the object, priceSelector, may delegate current market analysis to one or another
marketAnalysisSubsystem depending on the type of product.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 31

Some actions represent things that persons or organizations do, for which they are held accountable. Delegation has the
effect of assigning responsibility to the entity represented by an agent, while not removing the accountability of the entity
represented by the principal.

B.1.5.7 Evaluation [6.5.5 and 7.10]

An action that assesses the value of something is an evaluation. In an evaluation, the ODP system assigns a relative
status to some thing, according to estimation by the system of usefulness, importance, preference, acceptability, etc.

Example — In order to replenish inventory, the e-commerce system prepares requests for bids and transmits them to widget
suppliers. When bids are received, the e-com purchasing agent determines which bid or bids to accept. The decision considers
estimation of the value of each bid, which the e-commerce system prepares. The e-commerce system assigns a relative status to
each bid, according to some algorithm that produces an estimate of the value of that bid, using, not only the price, but the delivery
terms offered, records of the previous on-time performance of that supplier, and records of receiving inspection reports on the
quality of widgets from that supplier. This assignment of status is an evaluation by e-system of the bids.
Other examples of automated evaluation are credit scores and insurance underwriting ratings.

B.1.5. 8 Prescription [6.5.6 and 7.10]

Any action that sets a new rule or changes or removes an existing rule is a prescription. This includes a prescription
that an existing policy is to be applied in a certain type of circumstance. Prescriptions may be made by a party with
authority to do so, or by another object, as agent of that party.

Example — The CFO of e.com from time to time sets rules of the policy governing the granting of credit by the e-commerce
system to established customers. The e-commerce system also includes a credit history evaluation subsystem, which is delegated
authority by the CFO to change some rules of the credit policy. Such actions by CFO and creditHistoryEvaluationSubsystem
are prescriptions.

B.1.6 More about community

B.1.6.1 Establishing a community [7.6.1]

A community may be established during the operation of an ODP system. The specification of that system will include
establishing behaviour, which puts in place the contract of a community. [13.2.1]

Example – The specification of our e-commerceCommunity includes behaviour to establish a community of type,
just-in-timeCommunity, with a supplier object representing a widget supplier who agrees to maintain inventory of widgets sold
by e.com, and deliver them to e.com warehouses as directed by the inventoryMaintenance object. When a supplier agrees to do
so, a new community is established, comprising the supplier object and the inventoryMaintenance object.

B.1.6.2 Assignment policy [7.6.2]

A community may include rules for choosing the objects that fulfil roles in that community. These rules may be called
the assignment policy. An assignment rule prescribes, for some role, some characteristic that an object shall have to
fulfil that role, or some characteristic that an object may not have if it is to fulfil that role. These rules specify the way in
which objects are introduced and fulfil roles in that community.

Examples – The assignment policy of our e-commerceCommunity includes a rule providing that for an object to fulfil the
customer role it shall be an authenticated object. (Our specification includes the specification of a securitySubsystem, which
provides an authentication function for objects connecting to the e-commerce system.)
The specification includes rules for assigning parties to the role, widgetSupplier. When e.com agrees to purchase from a new
supplier, a new party object is created in e-system to represent that supplier and that party object fulfils the role,
widgetSupplier. The specification includes rules for introducing new objects. When e.com agrees to purchase from a new
supplier, an object representing that suppliers system are introduced and fulfil the role supplierSystem.
The specification includes rules for assigning existing employee objects to the role, manager.

The assignment of a role in a community to a particular object may result in a conflict between the policies of that
community applying to that role and the policies applying to some other role (in that community or some other
community) which is already assigned to that object. An assignment policy may include rules for handling such
conflicts. [7.9.1]

B.1.6.3 Relationship between communities [7.3.2, 7.8.3]

A community may interact with other communities in several ways:

1) An object representing a community (a community object) may fulfil a certain role in another community, interacting
with other objects in that other community.

Example – e-system is a configuration of objects, including a purchasing subsystem, a shipping subsystem, and an administration
subsystem. The enterprise specification includes a community, e-systemCommunity; the objects of that community interact to
realize the objective of that community. e-system is a composite object, a composition of the objects of e-systemCommunity.
The enterprise specification also includes supplyCommunity. The objects of that community are e-system, objects representing
the sales systems of companies that supply e.com, and objects representing systems of other companies that are also customers of
the supplying companies. When e-system participates in supplyCommunity, this is an interaction of supplyCommunity and
e-systemCommunity.

Draft ISO/IEC 15414:2002 (E)

32 Draft ITU-T Rec. X.911 (10/2001)

2) Two or more community objects may interact in fulfilling roles in another community;
Example – The enterprise specification includes a community corresponding to each of the subsystems of e-system, each with its
own objective, policies, etc. So there are purchasingCommunity, shippingCommunity, warehouseCommunity, and
accountingCommunity. Each of these subsystems is also a configuration of objects (the parts of that subsystem); each of these
objects fulfils one or more roles in the corresponding community. When object acting in a role in warehouseCommunity, the
inventoryMaintenance object, interacts with an object fulfilling a role in the purchasingCommunity, the role,
supplyPlanning, by providing information for use in purchasing widgets to restock inventory, this is an interaction between
warehouseCommunity and purchasingCommunity.

3) The same object may be required to fulfil a role in two communities, thus introducing implicit interaction between
those communities because of the shared object.

Example – When an object acts in the role, inventoryMaintenance, in warehouseCommunity and that object also fulfils the
role, assetReporter, in accountingCommunity, by providing, for use in daily asset accounting, information that object obtains
while fulfilling the role, inventoryMaintenance, this is an interaction between warehouseCommunity and
accountingCommunity.

4) An object in a community may fulfil an interface role, through which the community interacts with objects in its
environment, which environment includes an object fulfilling an interface role in another communiy;

Example – e-system may contain an object dedicated to monitor the business activities performed in e-commerceCommunity.
This object may process the data it gathers and produce reports of preferred supplier ranking and active buyer ranking. There is
also a ratingServiceCommunity. These two communities are operated independently, but exchange information. For that
purpose, e-commerceCommunity specifies an interface role, fulfilled by the object, monitor, that provides local ranking
information and receives nation-wide ranking information. The ratingServiceCommunity specifies an interface role, fulfilled by
an object in that community, which receives company specific ranking data and provides nation-wide ranking information. These
two interface roles enable interaction between the communities.

For each of above cases, when object(s) are involved in interaction between communities, an enterprise specification
will include policies such as the following:

In case 1) the community object is subject to the policies of the community in which it fulfils a role.
Example – e-system (a community object) is subject to the policies of supplyCommunity.

In case 2) the community objects interacting by fulfilling roles in another community are subject to the policies of that
community.

Example – In addition to being subject to their own individual policies, all the community objects representing the different
subsystems of e-system, (purchasingCommunity, shippingCommunity, warehouseCommunity, etc.) are subject to the
policies of e-system.

In case 3) the object that is fulfilling a role in both communities is subject to the policies of both communities. Other
objects may be subject only to the policies of one of those communities.

Example – The object fulfiling both of the roles, inventoryMaintenance and assetReporting is subject to the policies of two
different communities at the same time, warehouseCommunity and accountingCommunity. Other objects in
warehouseCommunity may be subject only to the policies of warehouseCommunity .

In case 4) the object(s) fulfilling an interface role for each community may themselves form a community with a policy
specified for their interactions. Those objects are each subject to the policies of the community in which they fulfil an
interface role and to the policy specified for their interactions.

Example – The object, monitor, is subject to the policies of e-commerceCommunity and to the policies of the information
exchange community composed of monitor and the object in the interface role of ratingServiceCommunity.

A fifth case of community interaction involves creation of a community. [7.3.2] Once a new community is created, the
relationship between the newly created community and other communities will be one or more of the above, and these
policy-community relationships will apply.

Example – In addition to a closed business-to-business supply chain community, the e-commerce system may make use of the
web services infrastructure, by registering its services to an open registry, in order to find new potential customers. And, when the
needs for customers are satisfied, e-commerce system may un-register the services from the open registry. Registration with the
open registry is represented as establishing behaviour, and the open registry, the e-commerce system, and the potential customers
using the registered web services are represented as a newly created community.

B.1.6.4 Domain [2-10.3]

A domain is a set of objects that are in some way controlled by another object, the controlling object of that domain. For
each domain in an enterprise specification, that specification identifies the controlling object of that domain, the
controlled objects, and the relationship between the controlling object and the controlled objects, which characterizes
that domain.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 33

Example – The parts of the e-commerce system are all under control of e.com. Other domains in that system include:
– a security domain, comprising objects providing data access and communication services, subject to policies set by a
security authority object, securitySubsystem.
– a naming domain, with named objects, which obtain their names from a naming service object.
– an audited domain, comprised of objects which are audited by a certain auditor object.

B.1.6.5 Federation [3-5.1.2]

A federation is a community that includes objects that are in different domains. Because such objects are controlled in
some way by different objects, there are concerns to be taken into account in forming a federation that are in addition to
those that arise in forming a community of objects all in the same domains.

Example – The automated systems in our example are not all under common control. The e-commerce system is under control of
e.com. It shall interact with, for example, another automated system controlled by a customer. We have many administrative
domains in our specification; these include the domain of automated systems controlled by e.com, as well as a domain controlled
by each customer. The e-commerce system also interacts with people; each person is, ultimately, controlled only by herself or
himself. (Although, we might, if it is useful in our specification, consider objects representing employees to be members of
domains controlled by objects representing their employers.)

The objective of a federation is often to join two or more <X>-domains into a larger, integrated domain, that is, an
<X>-federation. The notion of <X>-domain expresses a community managed by a single authority with respect to the
characterizing relationship, X. [2-10.3]

Example – The objects of e-commerceCommunity are not all under common control. The supplier systems are under
administrative control of each of the suppliers. There are several immediately visible "domains", for example, the e.com
domain(s?), and the customer IT system domain. Within the e-system itself, there are also domains under separate control. All
objects in the e-system are in a single securityDomain, with characterizing relationship, subjectToSecurityPolicySetBy and
controlling object, securitySubsystem. But the objects of purchasingSubsystem and shippingSubsystem are in a policy
domain, with characterizing relationship, setsPoliciesFor, with controlling object, fulfillmentDivisionExecutive, while the
objects of securitySubsystem are in a different policy domain, with controlling object, CIO.
An enterprise viewpoint specification might specify a number of separate federations, such as document management federations,
billing management federations, customer management federations and so on. Or it might take a unified approach, in which all
these aspects are captured into a single federation community. This federation community might also include a mechanism for
incorporating additional functionality, to achieve a new, shared objective.

B.2 Second Example – Specification of a Library
This section provides a second example to illustrate the use of the enterprise language concepts and structuring rules to
specify an ODP system. The example describes the elements that comprise an enterprise specification of a Library. Thus,
in this case, the ODP system is a business system (which may or may not include a computer system). The example
shows how RM-ODP specifications (in particular, those from the enterprise viewpoint) can be used to specify systems
other than computer systems.

Example – This example is based on a university library, especially on the regulations that rule the process of borrowing items
from that library. Instead of a general and abstract system, this example is loosely based on the regulations defined for the
Templeman Library at the University of Kent at Canterbury, a system that has been previously used by different authors for
illustrating some of the ODP concepts. The rules that govern the borrowing process of that library system are as follows:

1. Borrowing rights are given to all academic staff, and to postgraduate and undergraduate students of the University.
2. There are prescribed periods of loan and limits on the number of items allowed on loan to a borrower at any one
time. These limits are detailed below.

-- Undergraduates may borrow eight books. They may not borrow periodicals. Books may be borrowed for four
weeks.
-- Postgraduates may borrow 16 books or periodicals. Periodicals may be borrowed for one week. Books may be
borrowed for one month.
-- Teaching staff may borrow 24 books or periodicals. Periodicals may be borrowed for one week. Books may be
borrowed for up to one year.

3. Items borrowed shall be returned by the due date and time.
4. Borrowers who fail to return an item when it is due will become liable to a charge at the rates prescribed until the
book or periodical is returned to the library.
5. Failure to pay charges may result in suspension by the Librarian of borrowing facilities.

NOTE - Unless otherwise stated, all references in this section to the Library community will refer to the community representing
the Templeman Library and its environment, whose borrowing regulations have been described above. Other communities will
also be mentioned in this Annex, such as the University community that represents the University that the library serves, and a
banking community representing the use by the library of services offered by banks. Some variations of the Templeman Library
community will also be introduced for illustration purposes. For instance, for illustrating the accountability concepts of the
enterprise viewpoint language, we will introduce another library that uses a computerized system to keep track of the borrowers
and their outstanding loans.

Draft ISO/IEC 15414:2002 (E)

34 Draft ITU-T Rec. X.911 (10/2001)

B.2.1 Enterprise Specification

The enterprise viewpoint focuses on the purpose (i.e., objective), scope and policies for the system and its environment. It
describes the business requirements and how to meet them, but without having to worry about other system
considerations, such as particular details of its software architecture, or the technology used to implement it.

Four key concepts of enterprise language are: system, scope, enterprise specification, and field of application. The
following points in this section (B.2.1) describe these four concepts. Sections B.2.2 to B.2.4 focus on the elements that
constitute the enterprise specification of the system: communities, behaviour, and policies. Section B.2.5 concentrates on
the accountability concepts. Finally, Section B.2.6 discusses further issues related to communities, such as their lifecycle
and their interactions.

B.2.1.1 System
Example – In our example, the system we want to specify is a university library, in particular (a reduced and simplified version of)
the Templeman Library at the University of Kent at Canterbury, whose borrowing regulations have been given above. This system
(hereinafter called the ‘Library System’, or ‘LS’) and its scope are described by an enterprise specification.

B.2.1.2 Scope [6.1.1]

The scope of a system is defined in terms of its intended behaviour; which is expressed in the enterprise language in
terms of roles (see B.2.3.2) or processes (B.2.3.5) or both, policies (B.2.4.2), and the relationships of these. All these
elements will be described below.

Example – The scope of the LS describes its expected behaviour, i.e., the way it is supposed to work.

B.2.1.3 Enterprise specification [3-4.2.2]

An enterprise specification of an ODP system describes it from the enterprise viewpoint, and is composed of the
specifications of the following elements: communities (B.2.2.1), roles (B.2.3.2), processes (B.2.3.5), policies (B.2.4.2),
and their relationships.

Example – The LS and the environment in which it operates are represented as one community, the libraryCommunity. The
enterprise specification will state the objective of that community, how it is structured, what it does, and what objects comprise it.

B.2.1.4 Field of application

The field of application of an enterprise specification describes the properties that the environment of the ODP system
shall have for the specification to be used.

Example – The library in the example is the library of a University, and therefore assumes the existence of some structures and
roles typical of those organizations. It may not make sense if we try to use this specification for a library in the Army, where no
such concepts as academic staff or students can be easily applied.

B.2.2 Community

B.2.2.1 Community [3-5.1.1]

A community is a configuration of objects modelling a collection of entities (e.g. human beings, information processing
systems, resources of various kinds, and collections of these) that are subject to some implicit or explicit contract
(B.2.2.3) governing their collective behaviour (B.2.3.1), and that has been formed for a particular objective (B.2.2.2).

Example – In the specification of the Library System (LS), the library is represented as a community; the behaviour of that
community is specified in the following using roles, processes, and polices..

B.2.2.2 Objective [6.2.1]

An enterprise specification states the objective of each of the communities that comprise it.
Example – The LS maintains a collection of books, periodicals, and other items, that may be borrowed by its members. The LS
comes into being with the establishment of its collection, with the primary objective of “sharing this collection amongst the
University members”.

B.2.2.3 Contract [2-11.2.1]

The contract of a community specifies the objective of that community and how this objective can be met. That contract
is specifies the different roles that objects may fulfil in the community (i.e., its structure and behaviour) and the policies
that govern the behaviour of these objects while fulfilling roles in the community.

Please notice the importance of this concept within a community specification, since the contract contains all the
information about the structure of a community, its behaviour, and the way it operates.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 35

B.2.3 Behaviour

B.2.3.1 Behaviour

In the enterprise language, behaviour is specified using roles, processes, or both, policies, and the relationships among
these.

Roles identify abstractions of the community behaviour, and are fulfilled by objects in the community. Processes describe
the community behaviour by means of (partially ordered) sets of steps, which are related to achieving some particular
sub-objective within the community. A step is an abstraction of an action, which hides (some of the) objects
participating in that action.

B.2.3.2 Role [2-9.14]
Example – From the regulations of the Templeman Library, three main roles can be identified in our LS, namely borrower,
library item, and librarian. There are three special kinds of borrowers (academic, undergrad, and postgrad), and two kinds of
items (book and periodical). Loans are enterprise objects that are artefacts in borrow and return interactions between
borrowers and a librarian. Another role, calendar, is fulfilled by an enterprise object that deals with the passage of time (e.g. a
wall clock).
NOTE – In this Annex B.2, the use of the name of a role is a reference to an enterprise object fulfilling that role.[see also 3-5.2
Note 3]

B.2.3.3 Enterprise object

ODP systems are modelled in terms of objects. An object is a model of an entity. Enterprise objects model the entities
defined in an enterprise specification.

Example – The libraryCommunity is composed of objects fulfilling the roles identified above. In this specification objects
represent people (teachers, students, persons working as librarians…), books, periodicals, loans, clocks, etc. Please notice that an
object may fulfil more than one role, as it happen for instance when a person can be both a librarian and a student of the
University (if the University regulations allow this to happen).
The library can also be represented as an object; for example, it may be abstracted as a community object that may fulfil a role in
another community (see B.2.6.3).

B.2.3.4 Action
Example – The following actions can be identified from the regulations in the example:
(a) A borrower borrows an item with permission of the librarian,
(b) A borrower returns a borrowed item to the librarian,
(c) A librarian fines a borrower,
(d) A fined borrower pays his/her fines to the librarian, and
(e) The librarian suspends a borrower for being late in paying his/her fines.

B.2.3.5 Process and step [6.3.5]

Processes may also be defined in an enterprise specification for describing behaviour.

A process is “a collection of steps taking place in a prescribed manner and leading to an objective” [6.3.5].
Example – In the Library System, the process that defines the normal way of operation of users has two steps:
(1) a borrower borrows an item, and (2) a borrower returns the borrowed item before its due date.
This process specifies the order in which the steps shall occur, and leads to the objective: of the LS: “to share the collection of
items amongst the University members”.
Please notice how each step in this process is an abstraction of an action, where some of the participants in that action can be left
unspecified (e.g. the librarian).

B.2.3.6 Enterprise object and action

For every action, there is at least one participating object fulfilling at least one role in some community.

The involvement of an object depends on the kind of role.
Example – In the libraryCommunity, borrowers and librarians are actors in all actions specified for that community. Items are
resources. Calendar is an artefact in the action of fining a borrower (c), since it is only referenced, but does not participate in
that action.

B.2.4 Policy [2-11.2.7 and 6.4]

A policy is a set of rules that constrains the behaviour and membership of communities in order to make them achieve
their objectives. The rules can be expressed as obligations, authorizations, permissions, or prohibitions. Behaviour
contrary to a rule is a violation.

Example – The basic policies that govern the behaviour of the libraryCommunity were defined by the regulations at the
beginning of this example.

Draft ISO/IEC 15414:2002 (E)

36 Draft ITU-T Rec. X.911 (10/2001)

Examples of membership policies are those that prescribe: each item can be borrowed by at most one borrower at a time; at least
one object fulfils librarian in the library. (These two policies are obligations.) Other membership rules (although they may not
apply in this example) might establish, for example, that a suspended borrower cannot work as a librarian (a prohibition).
Examples of enterprise policies that govern the behaviour of the system can be extracted from the Library regulations:
(1) Any borrower is permitted to borrow an item if the number of his/her borrowed items is less than his/her allowance (as
provided in the regulations: eight items for undergraduates, etc.).
(2) An undergraduate is prohibited from borrowing a periodical item.
(3) Any borrower is permitted to borrow an item for a given period of time. The period depends on the kind of borrower and the
kind of the item being borrowed.
(4) Any borrower is obliged to return his/her borrowed items before their due date.
(5) A librarian is authorized to fine a borrower who violates the previous rule, i.e., who does not return an item before its due
date.
(6) Any fined borrower is obliged to pay his/her fines.
(7) A violation of the previous rule may result in an action, suspension of the borrower by the librarian, that is, the librarian is
authorized to suspend a borrower who does not pay his/her fines.
Note that in these policies there are some details left unspecified, for example, when the actions after a policy violation are
executed (expressed by “may result in” in policy 7), or the precise amount of the fines. Policy 7 also authorizes a librarian to
suspend a late-payer, but it does not specify when; the librarian may not to suspend the borrower at all (the suspension action can
be delayed forever). It may be a matter for further refinements to this specification to clarify all these open details.
Note also that most policies say what needs to happen when an action occurs, but not the reasons or circumstances that triggered
that action in the first place.

It is important to notice that in most systems there are some rules that govern the behaviour of that system and which are
not made explicit anywhere; yet they need to be explicitly stated in the enterprise specification.

Example – Such rules include the common sense rules: for instance, a borrower cannot return an item she has not previously
borrowed.

Normally, the act of writing an enterprise specification helps uncovering many of these implicit rules. However, special
care should be taken with these rules, since it is easy to under-specify, over-specify, or make wrong assumptions about
them (“common sense is quite uncommon”).

B.2.5 Accountability [6.5 and 7.10]

An enterprise specification identifies those actions that involve accountability of a party, where a party represents a
natural person or any other entity considered to have some of the rights, powers and duties of a natural person. Parties
have intentions, and are accountable for their actions (or failures to act).

Example – A borrower is accountable for the return of a book he has previously borrowed. He is not accountable, however, for
the return of a book he has not borrowed. Likewise, the librarian is accountable for suspending those fined borrowers that do not
pay their fines.

Authority or functions can be delegated. Principal parties are responsible for the actions of any parties acting as their
delegated agents, including their possible commitments, prescriptions, evaluations, declarations, and further delegations.

Example – A borrower may instruct a friend to return one of his borrowed books if he is unable to return it before its due date
(e.g. if he is going to be out of town when the loan expires). In this case, the borrower is still accountable for his original
commitment to return the book, independently from the fact that he has delegated his commitment to his friend. If the friend
forgets and fails to return the book on time, the borrower will still be liable for a charge for returning the book late.

B.2.5.1 Party [6.5.1 and 7.10]
Example – The objects representing people and the objects representing organizations (for example, the Library) are parties. The
objects representing computer systems or machines (e.g. the clock object fulfilling calendar) are not parties.

An enterprise object that is not a party cannot be accountable for its actions; it always operates on behalf of a party.
Example – Suppose another library Z has a Library Support System (LSS), that is, a computer system (not modelled in this
specification) in charge of keeping track of the collections of items owned by the Library Z, the outstanding loans, and the
borrowers. Suppose that the LSS has an internet front-end for consulting whether a book is free or on loan, the status of a given
borrower, etc. Then, the LSS (which is not a party) acts on behalf of its librarian (a party) when automatically answering the
queries via its web interface. In this scenario, the librarian of Library Z is accountable for all the information provided by the
LSS.

Certain kinds of action involve accountability. These include commitment, declaration, delegation and prescription.

B.2.5.2 Commitment [6.5.2 and 7.10.3]

Commitments are actions resulting in an obligation by one or more participants in the action to comply with a rule or
perform a contract.

Example – The action of borrowing a book is an example of commitment, since the borrower commits to return the book before
its due date.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 37

B.2.5.4 Declaration [6.5.3 and 7.10.4]
Example – The librarian has the authority to suspend persons who do not pay their fines. An action declaring that a borrower is
suspended is a declaration, and it calls for a set of actions, such as including him in the list of suspended persons, writing a letter
notifying this fact, sending the letter to the borrower, etc.

B.2.5.5 Delegation and authority [6.5.4 and 7.10.1]
Example – A borrower may delegate another person to return a borrowed book.
As an example of delegating authority, suppose that the librarian of Library Z could delegate to the previously mentioned Library
Support System (LSS) the authority to suspend borrowers who do not pay their fines. Thus, that librarian could, for example,
instruct the LSS to automatically suspend borrowers with pending fines greater than 20 pounds, if their debt is older than one
month. Once the Library Support System detects a borrower in these circumstances, it will automatically declare that borrower
suspended.
Of course, once the user is declared suspended, the LSS will accomplish all the actions that the declaration calls for; but please
notice that these subsequent actions are the result of the delegation. It is also worth pointing out that in this case, the party
responsible for all the actions carried out by the LSS is the librarian.

B.2.5.6 Agent and principal
Example – In case of a borrower delegating another person to return a book before its due date, that person becomes an agent of
the borrower, who is the party delegating, and the borrower becomes a principal of that person. The borrower remains
responsible for the return of that book.
In case of a librarian object delegating authority to suspend users to the Library Support System of Library Z, the Library Support
System, acting on behalf of the librarian ,will make the declaration. The System thus becomes an agent of the librarian, who is
the party delegating, and the party becomes a principal of the Library Support System.

B.2.5.7 Prescription [6.5.6 and 7.10.5]

Prescriptions are actions that establish rules. It is important to note that prescriptions happen only if the enterprise
specification provides for making prescriptions.

Example – In the regulations of the Templeman Library example nothing is mentioned about the possibility of establishing or
changing rules, and therefore they prescriptions forbidden.
In another LibraryCommunity (say W), the regulations may establish that the librarian of Library W may change the period of
loans during the Summer time, or the number of items that a borrower is allowed to simultaneously have on loan. The action of
changing the loan periods and item limits is a prescription
Other regulations of Library W may also allow to add new rules to those governing the borrowing of items, if they: (a) do not
conflict the existing rules; (b) are proposed by a Library member; and (c) are adopted at the Library’s annual meeting by the
majority of the Library members. The action of adopting a new rule is a prescription.

B.2.6 More About community [7.3.2]

B.2.6.1 Lifecycle of a community [7.6]

 A community is created by instantiating the corresponding contract template. Instantiation of a contract template
involves the assignment of objects to roles.

Example – The libraryCommunity comes into being with the establishment of its collection of items.

A community may include behaviour for creating new communities. Establishment of a federation creates a new
community; this involves determining the configuration of that community and the contract of that community, including
policies for that community.

Example – This is the case if a federation of university libraries is established to allow a wider exchange of books. In this new
community (the federation), libraries from different universities can share books or borrowers, and books can be returned in
libraries different to the one they are on loan.

B.2.6.2 Assignment rules [7.6.2]

A community may include rules for choosing the objects that fulfil roles in that community. These rules may be called
the assignment rules. An assignment rule prescribes, for some role, some characteristics that an object shall have if it is
to fulfil that role, or some characteristics that an object may not have if it is to fulfil that role.

Example – An assignment policy may state that for an object to fulfil librarian the person that object represents must have a
contract with the University that allows that person to work in a position of that category and, in case he can be a valid borrower
of that community, that he is not currently suspended. Likewise, for an object to fulfil borrower, the person represented by that
object must be in possession of valid credentials as academic staff or student.

In general, an object may fulfil many roles, in any number of communities.
Example – A member of the university staff may fulfil a teacher role in an educational community and also fulfil borrower in the
libraryCommunity. Alternatively, a single role may be fulfilled by more than one object: a library has many borrowers.

Draft ISO/IEC 15414:2002 (E)

38 Draft ITU-T Rec. X.911 (10/2001)

B.2.6.3 Relationship between communities

A complete enterprise specification may consist of a number of related community specifications. Communities may
interact in several ways.

Case 1 – Interaction between communities happens when a community object fulfils one or more roles in another
community.

Example – The community object composed of the libraryCommunity fulfils a borrower role in another library community. This
may be the case when there are agreements between libraries of different universities for inter-library loan of books. Thus, if a
borrower of libraryCommunity wants a book that is not currently available at the library, the specification may provide that the
libraryCommunity community object may borrow the book from another library where the book is available.

Case 2 – Two community objects interact in fulfilling roles in another community.
Example – Suppose that libraries can buy and sell books through some book broker system. In this case, if two library
communities are involved in a transaction, they both fulfil roles (buyer and seller) in a book-brokering community.

Case 3 – An object fulfils roles in two communities.
Example – So far, we have considered the library in isolation, but it is, of course, closely related to the University that it serves. In
a University community we find roles such as student, researcher, teacher, headOfDepartment, supportStaffMember, etc.
These roles are fulfilled by objects representing people, which objects may at some point also fulfil the role of borrower in the
libraryCommunity. Thus, the same enterprise object (in this case, representing a person) may fulfil roles in different
communities. In order to fulfil a borrower role, an enterprise object must fulfil an appropriate role in the university.

Case 4 – An object, in fulfilling a role of one community, interacts with an object fulfilling a role in another community.
This kind of interaction is achieved using interface roles [B.2.6.4]. Please note that this kind of interaction can be within
a larger community, or not (as it may be in the case in a business-to-business interaction).

Example – This is the case of a librarian object, which periodically may need to call the Support Centre of the University to set
the time of the clock, hence interacting with objects fulfilling roles in communities external to the libraryCommunity.

Case 5 – A community may include behaviour for creating new communities. Federation establishment is an example of
this situation, since it means the creation of a new community involving the definition of appropriate policies, the
structure for that community, and the community contract.

Example – The creation of a community may happen when a library, X, has a specified behaviour for temporarily establishing a
trading community with other libraries for finding a requested book, if it is not currently available at X. This newly created
community would cease to exist as soon as one copy of book is located at another library, Y, and is borrowed by the original
requestor (either directly from library Y, which owns the copy of the book, or through library X acting as a borrower of Y — see
interaction case 1).

In this fifth case, once the new community is created, during its lifetime the relationship between the created community
and others will fall under one of the four cases above.

In all kinds of interactions of communities it is critical to consider the invariants that determine the constraints on the
collective behaviour of the communities concerned, and the objectives and policies that govern the different
communities. The communities involved in an interaction may have differing rules; all of the objects participating in that
interaction must be able to conform to all those rules.

For instance, where a community object fulfils one or more roles in other community (case 1), the community that
community object represents is governed by the policies of the other community.

Example – This happens when a library acts as a borrower in another library, and then lends the book to a borrower of its own
community. The policies that apply to this loan include the policies of both libraries.

In the case of an interaction between communities where the same object is required to fill specific roles in more than
one community (case 3), an invariant specifies how the actions of that object affect those communities.

Example – Since the Templeman Library interacts with the University community, some of the University rules apply, such as
etiquette and manners for dressing and behaving in public, holiday periods, etc. Likewise, the laws and customs of the country
where the Library is based apply as well, forcing borrowers to pay fines in sterling pounds, speak in English to a librarian, etc.
NOTE – In this case the composition of communities introduces the composition of policies. If we consider a university library in
an Polish-speaking country, the assignment rules for librarian will probably indicate that the object fulfilling that role must, in
addition to complying with all the university and library regulations, be fluent in Polish.

Case 4 happens when an object, in fulfilling a role of one community, interacts with an object fulfilling a role in another
community. This interaction can be within a larger community, or not. If the interaction is within a larger community, C,
the community objects are subject to the policies defined for each community, and also to the policies defined for
community C, in a way similar to case 2. If there is no such larger community, the interactions are subject to the
individual policies defined for all the interface roles involved in the interaction

When composing communities, there will be a set of policies common to those communities. These policies shall be
consistent, although unspecified behaviour in the composite community may allow room for (mutually inconsistent)
behaviour in each individual community.

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 39

Example – One library specialized in particular topics may not allow borrowers to be under 18, while other library whose items
are toys and books for children does not allow their borrowers to be over 12. There is no problem when federating these two
libraries if there is no regulation in the federation about minimum age of borrowers, hence allowing the communities to co-exist
without conflicts.

B.2.6.4 Interface role

The enterprise language introduces the concept of interface role, a role in a community identifying behaviour that takes
place with the participation of objects that are not members of that community. Interface roles are used in case 4 of
interaction between communities [B.2.6.3] whereby an object, in fulfilling a role in one community, interacts with objects
fulfilling roles in other communities.

Example – As mentioned [B.2.6.3], this is the case for a librarian, who periodically may need to call the Support Centre of the
University to set the time of the clock, hence interacting with objects fulfilling roles in communities external to the
libraryCommunity.

Draft ISO/IEC 15414:2002 (E)

40 Draft ITU-T Rec. X.911 (10/2001)

INDEX

<viewpoint> language, 3

<X> domain, 2

<X> federation, 3

<X> template, 2

accountability, 5

action, 1, 4, 5

activity, 1, 5

activity structure, 5

actor, 4

actor (with respect to an action), 4

agent, 5, 6, 15, 16

artefact, 4

artefact (with respect to an action), 4

authorization, 5

behaviour, 4, 5

behaviour (of an object), 2

binder, 2

capsule, 2

channel, 2

cluster, 2

commitment, 5, 15, 16

community, 3, 4

community object, 4

component object, 2, 4

composite object, 2, 4

composition, 2

computational behaviour, 3

computational binding object, 3

computational interface, 3

computational object, 3

computational viewpoint, 3

configuration (of objects), 2

conformance, 2

conformance point, 2

contract, 2, 5

declaration, 5, 15

delegate, 6

delegation, 5

dynamic schema, 3

engineering viewpoint, 3

enterprise object, 3, 4

enterprise viewpoint, 3

entity, 2, 5

environment, 4, 5

environment (of an object), 2

environment contract, 2

epoch, 2

establishing behaviour, 2

field of application (of a specification), 4

information object, 3

information viewpoint, 3

instantiation (of an <X> template), 2

interceptor, 3

interface role, 4

internal action, 2

invariant, 2

invariant schema, 3

liaison, 2, 16

location in time, 2

natural person, 5

node, 3

nucleus, 3

object, 2

objective, 4

objective (of an <X>), 4

obligation, 2, 5, 16

ODP standards, 2

ODP system, 2, 4, 5

operation, 3

party, 5, 6

permission, 2, 5

person, 5

policy, 5

prescription, 5, 15

 ISO/IEC 15414:2005 (E)

 ITU-T Rec. X.911 (05/2005) 41

principal, 5, 6, 15, 16

process, 4, 5

prohibition, 2, 5

proposition, 2

protocol object, 3

reference point, 2

refinement, 2

resource, 4

resource (with respect to an action), 4

role, 2, 4

rule, 5, 15

scope (of a system), 4

state, 4

state (of an object), 2

static schema, 3

step, 4, 5

stream, 3

stub, 3

subtype, 2

system, 2, 4

technology viewpoint, 3

templates, 5

terminating behaviour, 2

type (of an <X>), 2

viewpoint (on a system), 2

violation, 5

