

Accredited Standards Committee
X3 - INFORMATION TECHNOLOGY

 Doc. No: X3H7-96-01
 Date: January 5, 1996

 Reply to:
 Haim Kilov
 IBM T J Watson Research Center
 30 Saw Mill River Road
 Hawthorne NY 10532 USA
 kilov@watson.ibm.com

Subject: Some materials on relationships for the enterprise viewpoint
of RM-ODP

This document shows how the ISO General Relationship Model (GRM)
describes relationships, and presents other related considerations about
relationship specifications. GRM [GRM 95] is an IS accepted in 1995
which provides very good definitions and guidelines for describing
relationships independently of their representation mechanisms; the
definitions are reasonably rigorous; and the generic relationship
examples show how these definitions can be used in enterprise business
specifications.
In what follows, substantial portions of the GRM have not been
referenced. In particular, the syntax of templates, the details of mapping
from the relationship world onto the systems management world, as well
as issues related to cardinalities have been omitted. The latter have not
been included because all cardinality constraints are just conjuncts of
appropriate invariants and pre- and postconditions described below.
Declarative specifications; invariant
A relationship is defined by GRM as a collection of objects together with
an invariant referring to the properties of the objects; and a relationship
class is defined as a named set of relationships sharing the same
definition. Thus, the relationship invariant defines the "collective state" of
the relationship participants. A participant fulfils a role in a relationship,
and a role describes the properties common to a particular kind of
participant in a relationship.

GRM further states that relationship behavior is representation-
independent and is described in terms of invariants over participant roles
and invariants, pre-conditions, and post-conditions over relationship
management operations and notifications. Thus, relationship operations
(and notifications) describe, in a declarative manner, the "collective
behavior" [OODBTG 91] of the relationship participants; in other words,
these operations are not owned by any of the participants. An invariant
is defined by GRM in a somewhat non-traditional manner: as a logical
predicate that must remain true during some scope; a scope might be the
lifetime of a managed relationship or the execution of a relationship
management operation.
An invariant the scope of which is the execution of an operation may be
represented eg in the Z operation schema (by convention [Spivey 92])
using Ξ. In other words, a name beginning with a Ξ denotes a schema
declaring "what remains unchanged" during the operation, i.e. declaring
those variables that are referred to but remain unchanged in the
operation. All other variablesnot explicitly changed in the operation (i.e.
not represented in the Z operation schema (by convention) using ∆)
remain totally unused in the operation.
Operations
The GRM further states that relationship management operations and
notifications are expressed in terms of "prototypical" ones, i.e. establish,
terminate, bind, unbind, query, and notify. The semantics of these
prototypical operations and notification are given by their pre- and
postconditions (and - for some operations - the operation invariant). For
example, establish is defined using pre- and postconditions: the
precondition states that the managed relationship does not exist;
managed objects that have mandatory participation in the managed
relationship do not exist; other managed objects specified in the establish
operation to be bound are of a class permitted to take on the role and
exist but are not bound into the managed relationship; and the
postcondition states that the managed relationship exists; objects that
have mandatory participation in the managed relationship exist and are
bound into the relationship. The definition of unbind, in addition to pre-
and postconditions, does include an operation invariant: the relationship
exists and the objects specified in the unbind operation exist; the role
and relationship cardinality constraints are not violated. The same
approach is used in information modeling [Kilov, Ross 94]: relationships
are defined by their invariants, and elementary relationship operations
are defined by their pre- and postconditions. Obviously, a relationship
does not have to support all of these basic operations: asymmetric
relationship, for example, does not support the bind or unbind
operations.

Representation
A relationship, its invariant and operations may be represented in terms
of (ie refined using) "ordinary" objects, their attributes, and operations
(GRM uses the term "systems management operations" for the latter).
These representations are usually convenient for implementation, but
difficult to use for understanding the semantics of the original
relationship. The semantics of a representation is precise, but not
abstract, and therefore the (abstract, representation-independent)
semantics of the original relationship is lost in representation details
irrelevant for its understanding. Moreover, the existence of several
possible representations of the same relationship implies that the
requirement to use a particular representation in the specification of a
relationship imposes an unnecessary - and often a non-optimal - choice
on the specifier, further distracting him from understanding the subject
matter and from conveying this understanding to the users. Message-
oriented - rather than generalized - object models [OODBTG 91]are a
well-known example of this distraction: their users have to invent an
object-owner for each operation (and invariant!) described in the
specification, whereas in most cases inventing such an owner at the
(business) specification level is quite unnatural.
The GRM states that the mapping of relationship operations and
notifications is such that the pre- and post-conditions and invariant for
the relationship operations or notifications and the invariant for the
relationship are respected by the systems management operations and
notifications.
Reuse; genericity
The GRM describes specialization as the derivation of classes from
existing relationship classes by means of inheritance and incremental
specification: a relationship class may be specialized by combining
characteristics inherited from one or several relationship classes with
characteristics specified in the relationship class template. The
specialized class is referred to as the subclass of the original class(es);
the original class(es) are referred to as the superclass(es) of the
specialized class. (Note that the existing definitions in Part 2 of RM-ODP
clearly differentiate "type" from "class" while this is not done in GRM).

The GRM provides several examples of generic relationships, such as
dependency, symmetric relationship, and composition. These generic
relationships (and a very limited number of other ones) can be used to
provide a richer built-in infrastructure for a specification.
Specificationsof these generic relationships are abstract and use formal
parameters. They are instantiated with different actual parameters and
thus applied in avariety of contexts which share some common
characteristics. An example of a generic relationship includes, in
particular, the relationship invariant and the signature, pre- and
postconditions for appropriate basic relationshipoperations.
For example, the invariant for the dependency relationship is defined in
GRM as "There exist two roles in this relationship class: parent role and
dependent role. The existence of a participant in the dependent role
implies the existence of at least one corresponding participant in the
parent role. The participant fulfilling the parent role should belong to a
managed object class different from the participant(s) fulfilling the
dependent role in the same instance of this relationship class."; and the
operation bind dependent is defined as "Signature: The class and
identity of the participant in the parent role; the class and identity of the
appropriate participant in the dependent role to be associated with this
participant in the parent role. Precondition: The corresponding instance
of this Dependency relationship class exists. The participant in the
parent role to be associated with this participant in the dependent role
exists and is bound into this instance of this Dependency relationship
class. There exists at least one other participant in the dependent role
bound into this instance of the Dependency relationship class.
Postcondition: Both the participant in the parent role and the appropriate
participant in the dependent role to be associated with this participant in
the parent role exist and are bound in the corresponding instance of this
Dependency relationship class."
Asymmetricity
We can consider a relationship using a somewhat different approach
which is in very good agreement with the concepts described in GRM, but
provides additional information and helps to represent relationships in a
natural anduniform manner eg in Z. A relationship may be considered
as a binary asymmetric relation. A relation type relates a source type to a
target type[Potter 91]. Any of these types may be nonelementary (e.g. an
instance of such a type may be a set, a set of sets, etc.). If a
nonelementary type is a set, then its corresponding elementary type will
be an element of this set. Let usconsider some (generic) examples.

• A Dependency (see also the GRM example above) is a relation between
the source type (parent) and the target type (dependent). Both the source
and the target types are elementary. The existence of an instance of the
Dependency relationship is equivalent to the existence of the
corresponding instances of the source and target types. For example, the
existence of an instance of an bank customer - account dependency is
equivalent to the existence of an instance of a bank customer and the
existence of corresponding instance(s) of account (for this bank
customer).
• A Composition is a relation between the source type (composite) and
the target type (set of component types). Here the source type is
elementary, and the target type is not. An instance of the composite type
corresponds to a set of sets of instances for each of its component types.
In a document composed of texts, pictures, and tables, an instance of the
document corresponds to a set consisting of three elements. Each
element, in turn, is a set of instances of pieces of text, pictures, and
tables, correspondingly. Each of these sets may be empty.
• A Subtyping is a relation between the source type (supertype) and the
target type (set of subtypes). Again, the source type is elementary, and
the target type is not. The existence of an instance of the Subtyping
relationship is equivalent to the existence of the corresponding instances
of the source and target types. For any given Subtyping relationship
instance, the set of instances of the target type will be a subset of the set
of instances of the source type (this does not usually hold for other
relationships). For a supertype employee and subtypes technical employee
and managerial employee, the set of all instances of technical employees
and managerial employees will be a subset of the set of instances of
employee (if the Subtyping is exhaustive, then the union of these sets of
subtype instances will be equal to the set of supertype instances).
• A Symmetric Relationship is a relation between the source type
(symmetricrelationship object) and the target type (set of participating -
regular -entity types). The existence of an instance of the Symmetric
Relationship is equivalent to the existence of the corresponding instances
of the source and target types. The number of elements in the latter set
must always be more than one; if it is equal to two, the Symmetric
Relationship is traditionally called "binary," whereas if it is greater than
two, the Symmetric Relationship is traditionally called "n-ary." The
number of elements in each set of typed participating entity instances is
equal to one.

Consider the sets of types of an instance of a source type and an
instance of an elementary target type (an object instance in RM-ODP
usually satisfiesseveral predicates - types). These sets should be
different, although they may have a nonempty intersection, so that the
following invariant holds: for any relationship instance, the set of types
for an instance of its source type is not equal to the set of types for a
corresponding instance of its elementary target type. For example, in a
Dependency, a parent instance and a dependent instance may satisfy a
common type, person, but they will satisfy other, different, types as well:
the parent instance will satisfy the employee type, and the dependent
instance will satisfy the dependent type. For another example, in a
Composition between things, both a composite instance and a component
instance will satisfy the thing type, but the composite instance will also
satisfy the assembly type.
In most, but not all, cases, additional conjuncts may be discovered for
the relationship invariant. For example, in most cases the existence of a
relationship instance is equivalent to the existence of an instance of the
source type and the existence of an instance of its target type. For some
kinds of composition, however, this need not be the case. Therefore,
inconsidering relationships it makes sense to investigate whether this
predicate holds.
For another example, in most cases (with the notable exception of
Subtyping!), the relation between a source type and its elementary target
type is irreflexive. The same is true for the transitive closure of this
relation. In other words, in most cases for any relationship instance (and
its transitive closure), the sets of instances of its source and elementary
target types have an empty intersection: an instance that belongs to a
source type cannot belong to an elementary target type in the same
relationship instance. Indeed, in an instance of Dependency, a parent
instance cannot have itself as a dependent; in an instance of
Composition, a composite instance cannot have itself as one of the
components; and so on. Moreover, a parent instance cannot have itself
as an indirect dependent; and a composite instance cannot be, directly or
indirectly, its own component. Again, inconsidering relationships it
makes sense to investigate whether this predicate holds.

References
[GRM 95] ISO/IEC JTC1/SC21, Information Technology - Open Systems
Interconnection - Management Information Services - Structure of
Management Information - Part 7: General Relationship Model. ISO/IEC
10165-7, 1995.

[Kilov, Ross 94] H.Kilov, J.Ross. Information modeling: an object-oriented
approach. Prentice-Hall, 1994.
[OODBTG 91] Object Data Management Reference Model. (ANSI
Accredited Standards Committee. X3, Information Processing Systems.)
Document Number OODB 89-01R8. 17 September 1991. (Also in:
Computer Standards & Interfaces, Vol. 15 (1993), pp. 124-142.)
[Potter 91] B.Potter, J.Sinclair & D.Till. An introduction to formal
specification and Z. Prentice-Hall International Series in Computer
Science, 1991.
[Spivey 92] J.M.Spivey. The Z notation: a reference manual. Second
Edition. Prentice-Hall International Series in Computer Science, 1992.

